Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.



# **Supporting Information**

for Adv. Funct. Mater., DOI: 10.1002/adfm.201501489

A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications

Yi-Nan Zhang, Reginald K. Avery, Queralt Vallmajo-Martin, Alexander Assmann, Andrea Vegh, Adnan Memic, Bradley D. Olsen, Nasim Annabi, \* and Ali Khademhosseini\*

### **Supporting Information**

A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications

Yi-Nan Zhang, Reginald K. Avery, Queralt Vallmajo-Martin, Alexander Assmann, Andrea Vegh, Adnan Memic, Bradley D. Olsen, Nasim Annabi\*, Ali Khademhosseini\*

The complete protein sequence is as follows:

The ELP was designed as a pentapeptide repeat of hydrophobic amino acids, with abbreviated sequence:

#### [[VPGVG]<sub>4</sub>IPGVG]<sub>14</sub>.

The complete nucleotide sequence of the completed gene is as follows, with the cysteine containing sequence (KCTS) italicized and the ELP gene in normal type:

GGATCCAAATGTACCAGCGCTAGCGGTCTCGTTGGTGTACCTGGTGTTGGCGTCCC GGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGT GTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTG TAGGCGTTCCAGGCGTTGGTGTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCC AGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGTGTACCTGGTGTTGGC GTCCCGGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCG TTGGTGTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCCAGGCGTTGGTGTACC GGGTGTAGGCGTTCCAGGCGTTGGTGTACCTGGTGTTGGCGTCCCGGGTGTAGGT ATCCCAGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGTGTACCTGGTG TTGGCGTCCCGGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTGTAGGCGTTCC AGGCGTTGGTGTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCCAGGCGTTGGT GTACCGGGTGTAGGCGTTCCAGGCGTTGGTGTACCTGGTGTTGGCGTCCCGGGTG TAGGTATCCCAGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGTGTACC TGGTGTTGGCGTCCCGGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTGTAGGC GTTCCAGGCGTTGGTGTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCCAGGCG TTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGTGTACCTGGTGTTGGCGTCCC GGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGT GTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCCAGGCGTTGGTGTACCGGGTG TAGGCGTTCCAGGCGTTGGTGTACCTGGTGTTGGCGTCCCGGGTGTAGGTATCCC AGGCGTTGGTGTACCGGGTGTAGGCGTTCCAGGCGTTGGTGAGACCACTAGTTAA ATGAATAAATGCACGTCTTAAAAGCTT

## WILEY-VCH



**Figure S1.** (a) Protein gel of KCTS- $E_{31}$ -KCTS and  $E_{22}$  proteins after purification. (b) UV-Vis plot showing the transition temperature of a 1% (w/v) solution of ELP.



**Figure S2**. *In vitro* cell seeding on ELP hydrogels. (a-b) Calcein-AM (green)/ethidium homodimer (red) LIVE/DEAD assay on ELP hydrogels seeding with MSCs (a) or HUVECs (b) at day 7 of culture (scale bar =  $200 \ \mu m$ ). (c) Phalloidin (green)/DAPI (blue) staining for F-actin/cell nuclei of ELP with HUVECs at day 7 of incubation (scale bar =  $100 \ \mu m$ ).

## WILEY-VCH



**Figure S3.** Enzymatic degradation rate of ELP gels *in vitro* with digestion with proteinase K for 6 hours.

| ELP<br>concentration<br>(% (w/v)) | Elastic<br>modulus<br>(kPa) | Stress at break<br>(kPa) | Strain at break (%) | Compressive<br>modulus (kPa) | Energy loss<br>(%) |
|-----------------------------------|-----------------------------|--------------------------|---------------------|------------------------------|--------------------|
| 10                                | $1.28\pm0.17$               | $6.46\pm0.35$            | $419\pm25$          | $3.01\pm0.44$                | $35.13 \pm 2.55$   |
| 15                                | $1.72\pm0.11$               | $7.71 \pm 0.53$          | $395\pm10$          | $6.15\pm0.28$                | $42.10\pm4.37$     |
| 20                                | $2.21\pm0.36$               | $10.09 \pm 1.81$         | $388 \pm 12$        | $13.05 \pm 1.20$             | $51.15\pm2.90$     |

 Table S1. Mechanical characterization of photocrosslinked ELP hydrogels.