Supporting Information: Joint Design of Large-Tip-Angle Parallel RF Pulses and Blipped Gradient Trajectories

Zhipeng Cao^{1,2}, Manus J Donahue^{1,3}, and William A. Grissom^{1,2,3,4*}

February 17, 2015

¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States

²Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

- ³Department of Radiology, Vanderbilt University, Nashville, TN, United States
- ⁴Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States

*Corresponding author: William A Grissom Department of Biomedical Engineering Vanderbilt University 5824 Stevenson Center Nashville, TN 37235 USA E-mail: will.grissom@vanderbilt.edu

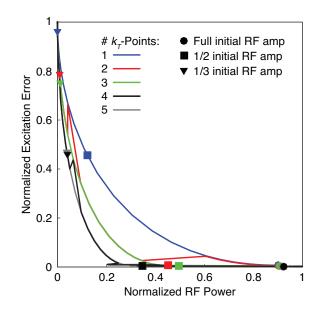


Figure S1: L-Curves for two-channel 1-5 k_T -point pulses, designed for 180° refocusing in one subject's axial brain slice. Each point in the curve corresponds to a pulse design with a different fixed integrated RF power regularization parameter λ (with periodic re-computation turned off in the LTA algorithm). As the number of k_T -points increases, the elbow in the curves becomes more pronounced, reflecting the opportunity for an increasingly favorable tradeoff between integrated RF power and excitation error. Also plotted are error-power coordinates returned by the algorithm with λ re-computation for each number of k_T -points and for different initial STA RF pulses. The initial RF pulses were obtained using the STA algorithm without integrated power regularization, and were either used as-is ('Full initial RF amp' case), or were scaled by 1/2 or 1/3. The positions of the final LTA coordinates for each of these initializers indicate that the LTA algorithm (with λ re-computation) tends to preserve the error-power balance of the initial RF pulses.

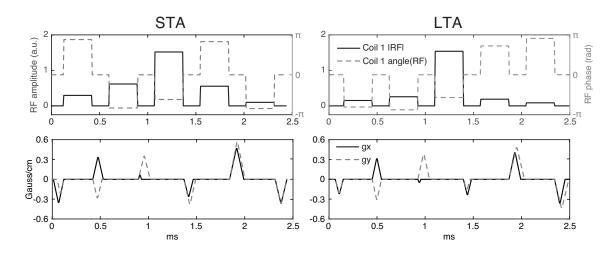


Figure S2: Comparison of STA and LTA k_T -points pulses for one transmit coil, from the in vivo experiment of Figure 5 of the main text. Overall, each subpulse of the LTA pulse has a different phase and amplitude compared to the initial STA pulse, and the gradient blips were also rescaled by the LTA design.