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1 Parameters for 2D model

Rates

N O

Production α 5 5

Degradation γ 1 1

Hill Coefficients hij and hiM
N O M

N - 1 -1

O 5 - -1

Treshholds θij and θiM
N O M

N - 1 1

O 1 - 1

Table 1: Parameters used in the simplified model from Balaskas et al. [1] in matrix form.
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1.1 Parameter for 2D model with the notation of Balaskas et al.

Parameters Matrix Notation Description Value

α - Maximum rate of P 3

β αO Maximum rate of O 5

γ αN Maximum rate of N 5

h1 - Hill coef of N on P 6

h2 - Hill coef of O on P 2

h3 hON Hill coef of N on O 5

h4 hNO Hill coef of O on N 1

h5 hNP Hill coef of P on N 1

k1 - Degradation rate of P 1

k2 γO Degradation rate of O 1

k3 γN Degradation rate of N 1

OcritP - Threshold of O on P 1

NcritP - Threshold of N on P 1

OcritN θNO Threshold of O on N 1

NcritO θON Threshold of N on O 1

PcritN - Threshold of P on N 1

n hOS Hill coef of S on O -1

m hNS Hill coef of S on N -1

- θOS Threshold of S on O 1

- θNS Threshold of S on N 1

Table 2: Corresponding notation for the parameters used in the simplified model of
Balaskas et al. [1]

With the following definition of the Hill function, applied multiplicatively for each
repressor.

Hill(G, θ, h) =
1

1 + (G/θ)h
=


θh

θh+Gh
if h > 0, θ > 0

Gh

θh+Gh
if h < 0, θ > 0

1 if h = 0, θ = 0

(1)
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2 Generating Travelling Waves

Assume an input M1 mediating, under the quasi-static assumption, the output M2

through the Hill function

M2 = α
MH

1

MH
1 + TH

(2)

Let M1 be an decaying exponentially gradient of the form

M1(x, t) = C1 exp(−C2x− C3t) + C4 (3)

then M2(x, t) = M2(M1(x, t)) is the traveling wave shown in figure S1. The necessary
condition αC1 � T , corresponds to a system initially past the saturation point of the
Hill function and ensures that cells initially start with the on-phase of the traveling wave.
The constant C4 sets the minimum concentration of the traveling wave and allowing for
non-zero steady-states in the case of activating morphogens. The parameters of figure
S1 are given in table S3

Parameter Value

α 1

H 5

T .1

C1 5

C2 .25

C3 .5

C4 0

Table 3: Parameters used to generate the traveling wave of figure S1
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Figure S 1: Generating travelling waves from decaying exponential gradients.
Decaying exponential gradients of an input M1 generate traveling waves of the output M2

whenM1 activateM2 through Michaelis-Menten kinetics. A. Snapshots of an exponential
gradient M1 as a function of position for different times. The blue-green color gradient
labels time from early to late. B. Associated concentration profile to (A) as a function
of time for different positions. The red-yellow color gradient labels the position from
anterior to posterior. C. The output M2 is a traveling Hill function as a function of
time. The position red-yellow gradient labels different position. D. The M2 traveling
wave associated to (C) as a function of position. The blue-green gradient labels the time
for each snapshot.
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3 Piecewise fit

Figure 3 F. of the paper shows a piecewise fit of the time course. The yellow points
highlight point which satisfy the valley condition roughly within 2%. That is

|~v+ − ~̇x| < 0.02

and the gray points correspond to an exponentially decaying gene Gi−1 = e−t+t0 and
the two consecutive genes slaved to the decay by the equations (with Hill replaced by
the shorter notation H)

t0 = Time when Gi reaches θi−1,i = 0.4

t1 = Time when Gi−1 ∼ 0.0 and the valley starts

Gi−1(t) = e−t+t0

Ġi(t) = αiH(M, θiM , hiM )H(Gi−1, θi,i−1, hi,i−1)H(Gi+1(t1), θi,i+1, hi,i+1) − γiGi

Ġi+1(t) = αi+1H(M, θi+1,M , hi+1,M )H(Gi−1, θi+1,i−1, hi+1,i−1)H(Gi(t1), θi+1,i, hi+1,i) − γi+1Gi+1

Because Gi−1(t) is a known function and we replace the full time dependence of Gi
on Gi+1 and Gi+1 on Gi by their values at time t1, we obtain two first order ODE in
one variable, the solution of which is an hypergeometric function.

Because the valley lives on a 2D plane between Gi and Gi+1, not all slow points lie
on the valley. As the system approaches the valley, Gi−1 is strongly repressed by Gi and
therefore decays exponentially following e−t+t0 where t0 is a constant which shifts the
curve in time according to which peak is fit. This exponential decay happens perpen-
dicularly to the plane of the valley. As Gi−1 reaches 0, the points agree with the valley
condition. This exponential decay is modeled by the gray lines and it is the transition
between two valleys. On the valley, Gi slowly decreases while Gi+1 slowly increases.
Once Gi+1 reaches θi,i+1 = 0.4 it strongly represses Gi which in turn exponentially
decays following e−t+t0 . The cycle thus continues.
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4 Stochastic analysis

The cell environment is intrinsically noisy because only a finite number of molecules, η,
are interacting. To have a useful model, it needs to be robust to noise, or at least we must
offer an argument for how it can be made more robust. There is an obvious problem
when considering a system that evolves in time stochastically: time compounds noise,
especially in system with sharp transitions such as those we present. The fact that there
is a bifurcation with a time scale finely controlled by the proximity to a critical value
also means that there is a trade off between noise robustness and the ability to produce
domains of variable length. Using the theory of the chemical Langevin equation which
we use to numerically simulate noise using the τ Leaping algorithm [2], we show how
the introduction of a cell coupling rescues patterning even in very noisy environments
(η ∼ 500).

Figures S2 and S3 show ensemble averages of 100 independent trials at a given
noise level, controlled by η, the number of molecules in a given volume. The average
time course resembles the deterministic time course and in the η → ∞ we retrieve the
deterministic solution. However, for smaller η, the peaks’ amplitudes of gene expression
are decaying as a function of time, as the variance increase. As time goes on, the loss
of predictive power makes it impossible to predict which state will be expressed at some
later time t. Due to the trade off between the critical behaviour at the bifurcation,
this worsens as TiM is adjusted to lengthen the domains. To remedy this problem, we
therefore propose a model by which cells interact with each other to reduce noise.
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Figure S2: Noise sensitivity for fast timescales. Stochastic ensemble average of the
oscillating 5D GRN with a fast timescale, θiM = 1.5 and different η. The higher η the
closer to the deterministic result and the variance becomes constrained to the transition
between two genes. For smaller η, the variance increases quickly and the predictive
power is lost. A.-D. represent the values of η = 500, 1500, 5000, 50000.
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Figure S3: Noise sensitivity for slow timescales. Stochastic ensemble average of the
oscillating 5D GRN with a slow timescale, θiM = 1.58 and different η. The GRN with
slow timescale is much more sensitive to the noise than the fast one. The higher η the
closer to the deterministic result and the variance becomes constrained to the transition
between two genes. For smaller η, the variance increases quickly and the predictive
power is lost. A.-D. represent the values of η = 500, 1500, 5000, 50000.
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4.1 Cell averaging

We simulate cell development with a two dimensional cell array. Each cell Cmn is exposed
to a concentration of morphogen Mmn which varies in time and space. We model Mmn

as a traveling wave propagating along the x axis (n index) so that each cell along the y
axis (m index) is exposed to the same concentration of M at a given time.

We postulate cell-to-cell interactions. To model cell interactions we will add interac-
tion rates R to our set of coupled ODEs. The resulting system is not cell autonomous
and requires keeping track of every cell individually. To motivate the form of our in-
teraction term, we note that it is known that cells interact with each other through
many means such as simple diffusion, endocytosis, the use of transport proteins such
proteoglycans or signaling pathways (e.g. Notch). Rather than modeling a particular
form of cell-to-cell interaction, we take a phenomenological effective term. We model
interactions between two cells using the rate function

R(Cmn[Gi]− Cpq[Gi], ξint, σint) = −σint(Cmn[Gi]− Cpq[Gi])
ξint

e
−
(
Cmn[Gi]−Cpq [Gi]

ξint

)2
(4)

where Cmn[Gi], Cpq[Gi] are the concentration of the gene Gi in the two different
cells indexed by (m,n), (p, q) in the cell array, ξint is the length of interaction sets a
concentration scale1 past which the cells do not interact and σint is the strength of
interaction which plays the role of the rate at which the interaction happens.

The purpose of this interaction is to average the difference between two interacting
cells. When Cmn[Gi] − Cpq[Gi] is zero, the function returns zero and there is no inter-
action. When |Cmn[Gi] − Cpq[Gi]| � ξint the cells are deemed dissimilar and they do
not interact (Figure 4C of main text). If |Cmn[Gi] − Cpq[Gi]| . ξint, the cells interact
in such a way as to return to their mean. If Cmn[Gi] > Cpq[Gi], R will be an effective
degradation rate and if Cmn[Gi] < Cpq[Gi], R will be an effective production rate. The
function R is plotted in figure 4D of the main text. By construction, for reasonable
values of ξint, σint , R cannot change the deterministic steady state because it vanishes
at zero and for values much greater than ξint.

To obtain a local interaction at the level of the embryo, we assume all cells inter-
act with each other with an interaction strength that falls off exponentially with their
distance. Define

d(Cmn, Cpq) =
√

(m− p)2 + (n− q)2 (5)

to be the cartesian distance between the two cells at position (m,n) and (p, q) respec-

tively, in the array. Then they interact with an interaction strength σ̃int = σinte
− 1−d

2

such that neighbor cells for which d = 1 interact with strength σint and cells separated
separated by d > 10 interact very little.

1By interaction length, we do not mean physical distance between cell, but difference between gene
concentrations.

9



Mmn(t) = Lt
T hmn

T hmn + th

dCmn[Gi]

dt
= αiHill(Smn, θiM , hiM )

∏
hij≤0

Hill(Cmn[Gj ], θij , hij)− λiCmn[Gi]

+ Cmn[Gi]
∑
p6=m

∑
q 6=n

R(Cmn[Gi]− Cpq[Gi], ξint, σint e−
d(Cmn,Cpq)−1

2 )

(6)

Finally, the deterministic coupled ODEs that represent these interactions is given
by Eq. 6 where Tmn is the exposure time which depends on cell position (m,n) and
Hill(G, θ, h) is the Hill function as defined in eq. 1. The chemical Langevin equation is
implemented according to the τ -leaping treating the production and degradation terms
as noisy reactions. The interaction term is assumed to be exact.

4.2 In Silico Evolution selects for ξint, σint

The interaction parameters ξint, σint have to be carefully chosen to counteract two op-
posing forces. If the parameters are too small, the averaging effect will be too weak and
there will be little improvement in noise robustness. If the parameters are too big, then
cells which have been exposed for shorter period of time and have therefore achieved
steady state will bias the expression of cells which are still deciding their fate.

To find suitable values for the interaction parameters, we run the an evolution al-
gorithm. To do so, we create a population of embryos (i.e. cell arrays equipped with
the GRN) each with different parameters ξint, σint. We integrate the the embryo once
deterministically without interaction terms to get C̃mn[Gi](t) and multiple times stochas-
tically with the interaction term to get each time Cmn[Gi](t). Embryos are then ranked
according to their fitness given by Eq. 7 which measures the RMS deviation from the
deterministic timecourse. Survival of the fittest dictates that embryos with bad fitness
are replaced by embryos with better fitness. The population is then mutated by slightly
changing ξint and σint and keeping all other parameters constant.

F = − 1

Nrows

∑
m

1

Ncols

∑
n

1

Ngenes

∑
i

√
1

Nt

∑
t

(C̃mn[Gi](t)− Cmn[Gi](t))2

Favg =
1

Ntries

∑
trials

F

(7)

For the simulation, we used η = 500, Nrows = 100, Ncols = 30, Ngenes = 5, Nt =
5000, Ntries = 5. We set θiS = 1.59 which gives a long timescale. The best parameters
were found to be ξint = 0.0588 and σint = 0.0300. Figure 4 of the main text shows the
ensemble average of the 30 cells per row for different columns for both the uncoupled
and the coupled system. We conclude that cell averaging preserves the timescale and
the predictive power which would otherwise be lost to noise.
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5 Criticality through the correlations as functions of time

Figure S 4: Correlations between genes along the time course. A. Correlations
between adjacent genes iandi + 1. (i): deterministic time course and average (over
500 runs) stochastic time course with N = 250000 molecules and θiS = 1.59. (ii)-(vi):
Correlations between pairs of adjacent genes B. Correlations between non-adjacent genes
i and i + 2. (i): deterministic time course and average (over 500 runs) stochastic time
course with N = 250000 molecules and θiS = 1.59. (ii)-(vi): Correlations between pairs
of non-adjacent genes
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