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Critical Timing without a Timer for Embryonic Development
Daniel E. Tufcea1 and Paul François1,*
1Ernest Rutherford Physics Building, McGill University, Montreal, Quebec, Canada
ABSTRACT Timing of embryonic development is precisely controlled, but the mechanisms underlying biological timers are still
unclear. Here, a validated model for timing under control of Sonic Hedgehog is revisited and generalized to an arbitrary number
of genes. The developmental dynamics where a temporal sequence of gene expression recapitulates a steady-state spatial
pattern can be realized through a simple network close to criticality, controlled by the duration of exposure to a morphogen. Crit-
icality simultaneously accounts for many observed biological properties, such as timing, multistability, and canalization of ge-
netic expression. This process can be parsimoniously generalized in many dimensions with a minimum number of genes, all
repressing each other with asymmetrical strengths, which also explains sequential activation of different fates. Separation of
timescales allows for a simple analytical interpretation. Finally, it is shown that even in the presence of noise, coupling between
cells preserves criticality and robust patterning. Themodel offers a simple theoretical framework for the study of emergent devel-
opmental timers.
INTRODUCTION
Our contemporary understanding of embryonic develop-
ment has been profoundly influenced by Wolpert’s paradig-
matic French Flag Model (1), proposing that morphogen
concentration levels set up boundaries of different cellular
domains. For instance, bicoid is generally proposed to
control gap genes boundaries in Drosophila (2), or FGF
gradient concentration to control the wavefront defining
future somites in vertebrates (3). However, it is also well
known that many differentiation processes are at least
partially controlled by the duration of exposure to somemor-
phogens (4,5). How such timing is actually performed by the
genetic and metabolic networks remains largely unknown.

A natural hypothesis is to assume some timer variable
slowly accumulates to reach different activation thresholds
and thus sequentially activates corresponding fates (6,7).
This constitutes, in essence, a dynamical French Flag
Model, where the maximum level of the timer variable in
any given cell irreversibly drives its eventual fate. The time-
scale of the process is then entirely controlled by the slow
timer accumulation and faster variables quickly reach a
quasi-stationary state (7). Such timers have yet to be clearly
identified in vertebrates even though experimental data sug-
gest candidates, e.g., overexpression of Cdx shifts Hox
domains in vertebrates (8). Theoretical work has also sug-
gested that existence of timers might drive apparitions of
new bifurcations as evolutionary transitions (9).

However, experimental and computational results also
suggest a more complex alternative. It has been shown
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that the timing of differentiation controlled by Sonic Hedge-
hog (Shh) in vertebrate neural tube does not use an explicit
timer, but rather relies on an emergent property of the under-
lying differentiation network (10). Zones in mouse hind-
brain are patterned under control of a dynamical Shh
morphogen, and cells can go through several transient fates
before stabilizing to their final state. Computational evolu-
tion of patterning networks aiming at simulating Hox-like
patterning (7,11) can also converge toward networks acti-
vating sequentially different fates before stabilizing, with
slow timescales much longer that the variables’ lifetime.
In both experimental and computational cases, the origins
of sequential activation of genes and of the slow timescale
within the patterning process are not fully understood.

In this article, we build a model for sequential activation of
genes and show how criticality, defined as the proximity of a
dynamical bifurcation, can explain timing. Criticality has
been under scrutiny in many complex systems, from statisti-
cal biophysics (12) to ecology, brain activity (13), cardiac
rhythm (14), orDrosophila development (15). We first argue
that the model for the control of differentiation of Shh pub-
lished in Balaskas et al. (10) is itself critical by being close
to a saddle-node bifurcation, which explains the slow time-
scales in such system.We then generalize themodel proposed
inBalaskas et al. (10) to a generalmechanism formorphogen-
esis defining an arbitrary number of regions within a simple
model of embryo, where genes corresponding to final fates
are sequentially activated. We argue that criticality in devel-
opment is a parsimonious mechanism explaining apparently
unrelated aspects of development such as timing,multistabil-
ity defining final cellular states, and canalization of dy-
namics. Finally, we discuss the possible limits of a critical
developmental mechanisms as well as experimental tests.
http://dx.doi.org/10.1016/j.bpj.2015.08.024
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MATERIALS AND METHODS

We consider purely transcriptional networks. Network behavior is modeled

using standard continuous approximations, with one differential equation

per protein. We use activating and repressing Hill functions to model inter-

actions, and further assume that all proteins degrade linearly. Equations for

specific networks considered are given in the Results.

Stochastic behaviors are simulated using a t-leaping algorithm, as

described in Gillespie (16), with propensities of transcription corresponding

to deterministic transcription rates (in the form of products of Hill

functions).

Simulations for Figs. 1, 2, 3, and 4 were implemented in the software

MATLAB (The MathWorks, Natick, MA). Simulations of coupled cells

were implemented in Cþþ, using standard integration methods. All scripts

are available upon demand.
RESULTS

Modeling dynamics of dorsal neural tube
patterning

Balaskas et al. (10) and Panovska-Griffiths et al. (17) have
used an approach combining experiments and mathematical
modeling to show how exposure time to Shh controls differ-
entiation in mouse hindbrain. They model explicitly the dy-
namics of Nkx2.2 (N), Olig2 (O), and Pax6(P) as in Fig. 1 A.
Shh (S) is assumed to activate N and O via an intermediate
target Gli, P represses N and is only expressed for low con-
centrations of S, and is repressed by both N and O. The level
FIGURE 1 Patterning under the control of a traveling wave morphogen. (A) G

and Shh (S). (Regular arrows) activation; (flat-head arrows) repression. (B) Simp

model. Texp is the exposure time; L is the steady-state value of S; L0 encodes th

(E) Timecourse for O,N for long exposure time (12 h). (F) S(t) as a traveling wav

to high concentrations of S than dorsal cells (right). (G) Schematic of the ti

(red/green) intermediary phase. Ventral cells reach steady state quicker than dorsa

et al. (10) and are given in the Supporting Material. To see this figure in color,
and duration of S and mutual repression between N and O
are proposed to define the future fates. Experimentally,
upon exposure to S, the system transiently expresses only
P, then O, and eventually N. The dynamics is recapitulated
and generalized by the proposed ACDC topology (17).

While there is some amount of positional information en-
coded by a graded morphogen (e.g., ventral cells in Balaskas
et al. (10) never get activated, while the very dorsal cells
express N very quickly), one of the main conclusion of Ba-
laskas et al. (10) is that positional information can emerge
from the dynamics of the network rather than a simple
read of morphogen level. For instance, bistability is
described as a crucial feature of the network (17). However,
the emergent features of the dynamics of the system itself
have not been studied. In particular, both experiments and
models display very long transient timescales at the border
of theO and N domains, which is experimentally moving for
several dozens of hours (see Fig. 4 C from Balaskas et al.
(10)). This is to be compared with a timescale of expression
of N in the very most dorsal part (of the order of a few hours
(10)) and is one order-of-magnitude longer than the half-life
of proteins proposed in Balaskas et al. (10), indicating that
some slowing down of the dynamics emerges at the network
level.

To get more insight into this phenomenon, we introduce
a simplified model of the dynamics in the dorsal region of
RN as presented in Balaskas et al. (10) for Nkx2.2 (N) Olig2 (O), Pax6 (P),

lified GRN with Pax6 removed. (C) S as a function of time used in simplified

e transient behavior. (D) Timecourse for O,N for short exposure time (6 h).

e through the embryo. Cells most ventral (left) are exposed for shorter times

me evolution for a cell array. (Red) O-dominated; (green) N-dominated;

l cells due to shorter exposure times. Parameters are the same as in Balaskas

go online.
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FIGURE 2 Criticality provides the basis for the

timing mechanism. (A) Flow in O-N phase for

S ¼ 0.6. (Red lines) Nullclines; (dark blue lines)

vector field; and (cyan line) from Eq. 3. (Solid cir-

cle) Stabled fixed points; (open circle) unstable

fixed point. (B) Flow for S ¼ 0.75, just past the

bifurcation. There is only one fixed point, and the

flow from origin is directed to the ghost fixed point.

(Inset) Zoomed-in image of the zone where saddle-

node bifurcation has just happened. The flow is

tangent to Eq. 3 between the nullclines. (C) Flow

for S ¼ 1. (D) Bifurcation diagram: O and N as a

function of S. For S% S� ¼ 0.558 there is a single

fixed point, the O state. At S ¼ S�, a saddle-node

bifurcation creates a stable-unstable pair of fixed

points. At S ¼ Sþ ¼ 0.71, a stable-unstable pair

of fixed points disappear, leaving the single N state.

(E) Phase plot of the separatrix and fixed points as

S varies from 0.6 to 0.705. (Solid/open circles)

Stable/unstable fixed points; (solid lines) separa-

trix. Even at the bifurcation, the origin is always

attracted toward the O state. (F) Instantaneous

velocity for the trajectory starting at the origin

for S ¼ 0.75 as a function of the N value. (Red)

Actual velocity; (black) Eq. 4 for velocity. The

two curves agree near the former fixed point, illus-

trating the relevance of the linear approximation.

(G) Instantaneous eigenvalues l5 for the trajectory

starting at the origin. To see this figure in color,

go online.
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the embryo close to the border of the O and N domains.
Although P plays a role in the timing of the O and N
interactions, the high P state essentially is a default state
on the ventral side of the embryo. We focus on the
richer dynamics between N and O in the dorsal part of
the embryo (17) (Fig. 1 B), and thus ignore P. We depart
from Balaskas et al. (10) and Panovska-Griffiths et al.
(17) by assuming positional information is purely encoded
through the dynamics of the input S, which we model as a
step variable. The equations governing the simplified sys-
tem are

Sðx; tÞ ¼ Lþ L0

TexpðxÞhexp
thexp þ TexpðxÞhexp

;

_O ¼ a
SðtÞhOS q

hON
ON � g O;
O

SðtÞhOS þ q
hOS
OS NhON þ q

hON
ON

O

_N ¼ a
SðtÞhNS q

hNO
NO � g N:
N

SðtÞhNS þ qhNSNS OhNO þ q
hNO
NO

N
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Apart from the removal of P, the only other difference with
the models from Balaskas et al. (10) and Panovska-Griffiths
et al. (17) is in the input variable S(x,t), which is assumed to
be a step function between a high-state L þ L0 and a default
signal of magnitude L, with a transition time depending on
position x. In the full network, Shh, via Gli, activates both N
and O and presents a complex adaptivelike behavior, i.e.,
strongly activated, then coming back to a very low activity.
But Gli’s transcriptional influence is modeled in Balaskas
et al. (10) as working close to saturation. As illustrated in
Fig. S1 in the Supporting Material, the effect of an adaptive
dynamics through a Michaelis-Menten function is essen-
tially stepwise, from an on-phase to an off-phase, with
longer switching-off times for bigger amplitude. To simplify
this cascade, we thus directly model activation of the
network as a Hill function depending on time and space.
The Hill coefficient hexp controls the steepness of the decline
in S; the threshold Texp(x) controls the exposure time to
higher concentrations of S. To account for differences in
positions, Texp(x) is an increasing function of position
(Fig. 1 C).



FIGURE 3 Criticality for mutually repressing genes in multiple dimen-

sions. (A) Idealization of a system generalizing the two-dimensional model

in many dimensions. (B) Model of five mutually repressing genes stabiliz-

ing in different states as a function of exposure time. (i–vii) Longer expo-

sure times. Networks are initialized with one gene high (e.g., G1 ¼ 4.5,

Gi ¼ 0). S steps from 1 down to 0 at various times (indicated by vertical

dashed lines), and the system subsequently stabilizes at different states.

(C) Evolution of multidimensional model as a function of time. Variation

of parameters shapes different relative timing of expressions of genes.

(i–vii) Increase of qiM (qiM ¼ 1.50, 1.53, 1.56, 1.59, respectively) yields

longer timescales. (v–vii) Asymmetrical modifications of qiM gives much

longer expression for a given gene. (D) Spatial final pattern corresponding

to (C) for a traveling step of M (speed: 1 cell per unit of time) for

comparison of temporal and spatial profiles. To see this figure in color,

go online.
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The reason for inclusion of a default signal L, is that,
while the published model from Balaskas et al. (10) and
Panovska-Griffiths et al. (17) goes through multiple bifurca-
tions and is multistable for sufficiently high value of the
modeled input Gli, Shh signaling disappears within a time-
scale comparable to some fate decision (~60 h; see Balaskas
et al. (10) and Panovska-Griffiths et al. (17), and Fig. 1, D
and E, for Shh signaling dynamics and Fig. 3, A–C, for
dynamics of boundaries), and steady states are thus
maintained even in close-to-complete absence of Shh
signaling. This is not explicitly accounted for by the model
from Balaskas et al. (10) and Panovska-Griffiths et al. (17)
because fixed points disappear when there is no Shh signal.
To keep those steady states, we assume that some default
signaling is maintained to keep multistability in the system.
If the basal rate L is high enough, the system is bistable like
the classical toggle-switch mechanism (18,19), similar to
that found by Panovska-Griffiths et al. (17). There are
then two stable steady states with either high O/low N (sub-
sequently called the ‘‘O state’’) or high N/low O (the
‘‘N-state’’); see Fig. 1, D and E. When S is high enough,
only the N-state is stable. Note also that P does not corre-
spond to any hypothetical third steady state in the model
of Panovska-Griffiths et al. (17) for midrange signaling of
S (it is simply slaved to O and N), further justifying its
removal in our approach.

A noteworthy addition in this model compared to the
classical model of toggle switches (such as seen in
Fig. 8 a in Cherry and Adler (18), Fig. 2 a in Gardner
et al. (19), or the general case presented in Jaeger and
Monk (20)) is an asymmetry in mutual repressions between
N and O: repression of O by N is much more stringent than
repression of N by O (technically, this is done through a
higher Hill coefficient hON ¼ 5 vs. hNO ¼ 1). As conse-
quence of the asymmetry in the parameters, the dynamics
of the network is itself asymmetrical in phase space. In
particular, even when only the N state is stable, before
reaching the N state, the system seems to visit the O state
existing for a lower value of S. This explains how posi-
tional information depends on dynamics: when S decays
to its final default value, the final state of the system thus
depends on the length of exposure of the system to S. It
stabilizes into the O state for short exposure to S
(roughly <12 h, see Fig. 1 D), and into the N state for
long exposure to S (see Fig. 1 E).

So the simpler submodel from Fig. 1 B encapsulates not
only the main timing characteristics observed in Balaskas
et al. (10) and the trajectory in the O-N space characteristic
of the ACDC network (17), but also pattern stabilization in
the presence of a default signal L. Putting everything
together, cells most dorsal in the embryo are then exposed
for a longer time and stabilize in the N state, while cells
most ventral stabilize in the O state, as schematically illus-
trated in Fig. 1, F and G.
Criticality and valley between ghost and stable
states

To get a more mathematical understanding of what
happens, the trajectory of the model is studied in the
N-O plane with different constant values of S (see Fig. 2,
A–C). Difference in nonlinearity in O and N repressions
are clearly visible, with the O nullcline much steeper
than the N one.

At medium concentrations of S (S� % S% Sþ, Fig. 2 D),
while the system is bistable with coexisting O and N states,
the flow from the origin is biased toward the O state. This is
due to the fact that separatrix between the two fates is far
from the origin (assumed to correspond to initial conditions,
Fig. 2 E). At Sþ, the system goes through a saddle-node
bifurcation (21) where the unstable fixed point moves to-
ward the biased state O and eventually collides with it
(Fig. 2, B and C). Importantly, the separatrix does not cross
the origin when the bifurcation happens (Fig. 2 E), which
Biophysical Journal 109(8) 1724–1734



FIGURE 4 Study of critical flow in multidimen-

sional model. (A) Plateau duration for model of

Fig. 3 B (semilog scale) as a function of the value

of input parameterM, illustrating variation of time-

scales even far from the bifurcation. (B) Compari-

son between flow (dark blue) and approximated

two-dimensional valley (cyan) for multidimen-

sional system of Fig. 3. (Green and red solid sur-

faces) Multidimensional nullclines of G2 and G3,

respectively, in the three-dimensional phase space

(G1, G2, G3, G4 ¼ 0, G5 ¼ 0). (C) Comparison of

full dynamics of a multidimensional system with

two approximate regimes: slow motion on succes-

sive valleys (yellow line); fast exponential relaxa-

tion between valleys (gray lines). (D) Simulated

mutant for this model: if one gene is transiently

killed, the sequence of gene expression resumes

but with fast typical timescales dominated by the

degradation constant and not by the eigenvalues

at the bifurcation. To see this figure in color,

go online.
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means that the local flow from the origin hardly changes at
the bifurcation.

This imposes the very particular asymmetrical flow in
phase space for high S (S R Sþ), as seen in Fig. 2, A–C.
Irrespective of S values, flow from the origin is driven
toward the O state. If S is not high (S % Sþ), this state
is stable and the system stabilizes there. If S is high, the
system cannot stabilize at the O state and will inevitably
flow toward the stable N state. However, the flow
from the ghost O state to the stable N state will be criti-
cally slow (15,22), because of the proximity of the bifurca-
tion. Fig. 2 F illustrates the speed of the flow v

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_OðtÞ2 þ _NðtÞ2

q
) as a function of N(t) for a trajectory

starting at the origin. Close to the origin, the dominating
timescale is the degradation rate (or ~1 h�1 in the units
from Balaskas et al. (10) we use), which, because O is
scaled to be of order 1, also gives speed of order 1 in
our units. Then, we clearly see a first local minima of
the speed close to the ghost fixed point (here the O state
with low N) with a speed of ~10�2. Finally, the system es-
capes this ghost attractor and slowly converges with a
speed of ~10�1 toward the final high N fixed point.

To further illustrate this phenomenon and explicitly
derive timescales, we can approximate the system by a
linear Taylor expansion:
_N ¼ f ðOÞ � Nzf 0ðO0ÞO� N þ f ðO
_O ¼ gðNÞ � Ozg0ðN0ÞN � Oþ gðN

Biophysical Journal 109(8) 1724–1734
This is valid for ~x ¼
�
N
O

�
close to an arbitrary

~x0 ¼
�
N0

O0

�
. Eigenvalues l5 and eigenvectors~v5 of A are

l5 ¼ �15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðN0Þf 0ðO0Þ

q
;

~v5 ¼

0
BBB@

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðO0Þ
g0ðN0Þ

s

1

1
CCCA:

Fixed points are defined by ~x_ ¼ A~x0 þ~B ¼ 0. Stability is
given by the sign of l5 at~xo along~v5. In the case of the
stable O state, we have of course l5 < 0; in the case of
the unstable state between the O state and the N state, we
have l5 > 0, l� < 0. At the bifurcation, the O state and
the unstable fixed point collide and cancel out. By continu-
ity, this forces l5 ¼ 0 and as a result l� ¼ �2 at the bifur-
cation (Fig. 2 G) with parameters from Balaskas et al. (10).
Varying S slightly past the bifurcation gives rises to a
region where l5 and ~x_ are small and constrained by the
almost touching parallel nullclines (Fig. 2 B). The general
solution to the above linear system near ~xo is ~x ¼
aelþt~vþ þ bel�t~v� � A�1~B with the value a,b given by
initial conditions. In the case where we have slow motion
0Þ � f 0ðO0ÞO0

0Þ � g0ðN0ÞN0

h _x! ¼ A x!þ B
!
:
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and jl5j << jl�j, the value bel�t~v� dies very quickly
compared to aelþt~vþ (Fig. 2, B and C) and the motion lies
parallel to~vþ. Therefore the dynamics is quickly canalized
on a local one-dimensional manifold defined by ~vþ at the
bifurcation.

Strictly speaking, this approach is valid only right at the
bifurcation and defines a slow manifold only in the neigh-
borhood of the disappearing fixed point. But because the
flow stays close to the nullclines (corresponding to
_N ¼ _O ¼ 0), it is itself very small. Thus it is reasonable to
approximate it by its Taylor expansion in a full valley of
near-fixed points sandwiched between the two nullclines,
where ~B is small. Let points on the valley be denoted

by~xv ¼
�
Nv

Ov

�
.

The canalization on such a valley past the bifurcation and
further from the fixed point follows a similar linear Ansatz:

_N ¼ f 0ðOvÞO� N þ f ðOvÞ � f 0ðOvÞOv; (1)

_O ¼ g0ðN ÞN � Oþ gðN Þ � g0ðN ÞN : (2)
v v v v

The local eigenvalues and eigenvectors are defined in the

same way as before, and if 0x jl5j<< jl�j, which should
happen by continuity, the system relaxes quickly on the
local direction ~vþð~xvÞ. Given that the O component of vþ
is 1 by definition, the full nonlinear system gives that
~x_vxðgðNvÞ � OvÞ~vþ, and from this the following implicit
equation defining the valley in phase space is derived:

ðf ðOvÞ � NvÞxðgðNvÞ � OvÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðOvÞ
g0ðNvÞ

s
: (3)

Agreement of this expression with the full system is excel-

lent before and after the bifurcation, as illustrated in Fig. 2,
A–C. Motion eventually relaxes toward the N state along this
manifold between the two nullclines.

Finally, the analytical approximation for the phase-space
speed along the canalized valley is given by

v ¼ k _~xv k ¼ jgðNvÞ � Ov j k~vþ k

¼ jgðNvÞ � Ov j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðOvÞ

g0ðNvÞ

s
;

(4)

which is also in excellent agreement with the full nonlinear

system as illustrated in Fig. 2 F. Equation 4 is helpful to un-
derstand the origin of the slow timescales: near the bifurca-
tion vf jg (Nv)�Ovjz 0, it is theO component of A~x0 þ~B
so that the system will escape the ghost fixed point in a
time t � 1=v, which is big compared to any parameter of
the system. This explains the timing effect: much of the
time evolution of the system is spent close to the O ghost
state. This becomes especially noticeable very close to the
bifurcation as t / N. It is important to note that the
approximation breaks down as the flow gets further from
the bifurcation and the distance between the nullclines in-
creases, which indicates that A~x0 þ~B becomes big.
Generalization to higher dimension

The previous model combines a timing effect and canaliza-
tion on a one-dimensional manifold due to criticality for
high S value, and multistability ensuring the stabilization
of the dynamics when S is removed. However, this model
is fundamentally bidimensional and leads to only two
different fates.

It is not clear that it can work in a higher dimension,
because the flow a priori is less constrained. Strikingly,
this mechanism can be indeed generalized to generate
many steady states as long as repression strengths between
pairs of genes are asymmetrical, as in the previous section.

Assume a traveling wave of a dynamical repressing
morphogen M sweeping across the embryo according to
Fig. 3 A, such that each cell has a different Texp according
to its position along the length of the embryo (repression
mediated by morphogens is common in biology, as illus-
trated by the classical anterior/posterior mutual repression
fates via the RA/FGF system (23)). The goal is to produce
a model of gene networks generalizing the process of the
previous part with several fates, i.e., a model where the sys-
tem seems to visit sequentially different fates with a slow
timescale, and stabilizes there if morphogen M is removed.

Consider a model where M controls a network of Ng

mutually repressing genes. For simplicity, assume all tran-
scription rates and all degradation rates are the same for
every gene, and that repression is performed via multiplica-
tive Hill functions with identical coefficients. The equation
regulating time evolution of concentration protein j is

_Gi ¼ ai

qhiMiM

qhiMiM þMhiM

Y
isj

q
hij
ij

q
hij
ij þ G

hij
j

� giGi:

The only differences between genes is in their relative

threshold of repression of gene i by j, qij and the threshold
of repressions by morphogen M, qiM, so that a network is
completely defined by the Ng � (Ng þ 1) matrix of q-values
(see Table 1).

Then, a network with qiþ1;i ¼ q1;Ng
¼ qweak for any i, qij¼

qstrong for all other couples (i,j), qiM ¼ qM generalizes the
canalized flow observed for the two-dimensional system in
many dimensions as long as qweak > qstrong are chosen so
that the system can transition from one gene to the other.
This choice of parameters essentially builds nested interac-
tions similar to the O-N state described in the first part. See
Fig. 3 B for illustration of the mechanism with a specific set
of parameters giving rise to an oscillation between five
genes/fates.
Biophysical Journal 109(8) 1724–1734



TABLE 1 Table for the Ng ¼ 5 dimensional network

Rates G1 G2 G3 G4 G5 M

Production a 6 6 6 6 6 —

Degradation g 1 1 1 1 1 —

Hill coefficients hij and hiM

G1 — 5 5 5 5 3

G2 5 — 5 5 5 3

G3 5 5 — 5 5 3

G4 5 5 5 — 5 3

G5 5 5 5 5 — 3

Thresholds qij and qiM

G1 — 0.4 0.4 0.4 2.5 1.5

G2 2.5 — 0.4 0.4 0.4 1.5

G3 0.4 2.5 — 0.4 0.4 1.5

G4 0.4 0.4 2.5 — 0.4 1.5

G5 0.4 0.4 0.4 2.5 — 1.5

Taken from the systems shown in Fig. 3.
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When there is no M, all Ng genes repress each other so
that only one single gene can be expressed at steady state,
leading to the existence of Ng steady states corresponding
to as many different cellular fates. When M is high enough,
all fixed points disappear but Ng ghost states remain where
the flow is locally considerably slowed down. Consequently,
as the time of exposure to morphogen increases (from (i) to
(vii) in Fig. 3 B), the network goes through a sequence of
plateaus corresponding to different fates. It eventually stabi-
lizes in the fate it is in at the time when M disappears.

This mechanism can be easily modulated to give any
dynamical pattern while keeping the order of gene ex-
pression constant. Parameters can be changed to modify
relative timing of a given gene or global timing of the full
systems, as illustrated in Fig. 3 C (dynamics in cell
constantly exposed to M) and Fig. 3 D (pattern correspond-
ing to a traveling wave of M with a speed of 1 cell per unit
of time).

Changing parameter qM for all genes simultaneously can
change the timescale of the whole system as illustrated in
Fig. 3, C and D (i–iii). The system can also spend more
time close to a chosen ghost state by changing only some
of the parameters qiM in the system to go closer to one bifur-
cation. AfterM removal, this gives rise to a relatively bigger
domain of expression at steady state for the corresponding
gene (see Fig. 3, C and D (v–vi)). Finally, there is no need
to have an actual oscillator: it is possible by a change of
qNgM to ensure that the system stabilizes in one final state,
irrespective of M value.
Understanding dynamics of critical flow

A natural question arising is how far from the bifurcation
can we observe a critical slowing-down? Fig. 4 A illustrates
the clear dependency of the time between successive max-
ima of different genes as a function of constant values
of M. As expected, timescale diverges close to the bifurca-
Biophysical Journal 109(8) 1724–1734
tion. For large values of M, the time between two maxima
of successive genes is approximately equal to 1.4 in our
time units (and thus of the order of the inverse degradation
scale as expected). Plateau duration is then getting signifi-
cantly higher than its asymptotic value over a wide range
ofM: for instance, forM¼ 1.5, plateau duration is increased
by 50% to reach 2.2, forM ¼ 1:25 it is 3, and forM¼ 1 it is
higher than 6 (as can be seen in Fig. 3 B). Thus, the system
experiences severalfold slowing-down of its timescale
within a twofold range change of M, even relatively far
from the bifurcation.

A simple analytical approximation fully describes the
system dynamics. The order of gene expression is imposed
by the fact that qiþ1,i is higher than all other qi,j so that if any
gene i is activated, only the successor i þ 1 is not heavily
repressed and therefore slowly accumulates. Because the
system is now multidimensional, the full linearization of
the system is much more complicated, in particular the ma-
trix A ¼ dG_ i=dGj contains many terms depending on Gi and
is hard to visualize. However, the peaks of expression of
each gene i correspond to ghost fixed points left by the bifur-
cation at high M. The matrix A then locally simplifies and
becomes effectively two-dimensional along variables Gi

and Giþ1, and we can use the exact same approximation
as in the two-dimensional system to compute an implicit
equation for the valley, and the corresponding slow time-
scales. This is illustrated in Fig. 4, B and C; the flow in a
three-dimensional projection (dark blue) coincides locally
with the approximated two-dimensional valley in subspace
G2-G3 computed from Eq. 3 (cyan line, Fig. 4 B). Fig. 4 C
(yellow lines) indicates when the direction of the actual vec-
tor field is within 2% of the direction of vþ, as computed in a
previous section.

A different faster regime matches the successive valleys.
Just like in the two-dimensional case, on the valley, Gi

(like O) slowly decreases while Giþ1 (like N) slowly in-
creases. At some point, Giþ1 reaches the threshold of repres-
sion qstrong. It then shuts off production of Gi, which then
exponentially decreases with a time constant 1 in rescaled
units, i.e., much faster than the typical timescale at the bifur-
cation accounting for criticality and time evolution on the
valley. Fig. 4 C illustrates such an exponential Ansatz
(gray lines) for successive Gi, with Giþ1 and Giþ2 simply
slaved to Gi using their differential equations (see the Sup-
porting Material for details). Once Gi has completely died
out, the system quickly relaxes to the next valley close to
the fixed point with high Gnþ1 and low Gnþ2, and the pro-
cess continues with slow motion on the valley. At any given
time, the flow therefore approximately lies in the three-
dimensional subspace of the phase space, corresponding to
the gene activated, its predecessor, and its successor. Movie
S1 illustrates the dynamics of the flow in the subspace
defined by three consecutive genes.

Finally, a characteristic effect of this mechanism can be
observed if the activity of one of the genes is artificially
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set to zero momentarily. In Fig. 4 D, G2 is transiently set to
zero at t ¼ 20 h. The system then resumes its course in the
determined order over a much shorter timescale and with
increasing amplitude. This is to be contrasted with a timer
model such as proposed in François and Siggia (7), where
relative timing of the fates are independent from each other
and controlled purely by the timer.
Coupling rescues degradation of the pattern by
noise

As demonstrated in previous sections, a critical system
tuned to be close to a bifurcation can implement sequential
activation of fates, developmental timing, and multistability
associated to development. One issue of concern is that
biochemical noise could potentially destroy criticality and
thus slow timescales, for instance by pushing the system
away from the slow manifolds. This is simulated in
Fig. 5, A and B, using a t-leaping algorithm (16): consid-
ering an ensemble of 30 cells exposed to the same duration
of M, the averaged concentrations of genes as a function of
time exhibit a strong loss of synchrony (compare Fig. 5 A
with Fig. 3 B, and Fig. 5 B with Fig. 3 D (i)). Loss of syn-
chrony in development is well known for Notch mutants
(implicated in cell-to-cell coupling), especially in the seg-
mentation clock context (24,25). Movie S2 illustrates the
dynamics of independent cells in a simulated two-dimen-
sional embryo (30 � 100 cells) under control of a traveling
wave of M.

A priori, coupling between cells could help overcome this
issue. However, new difficulties arise from coupling: for
instance, while noise is lowered if cells in the same state
are coupled, the coupling can destroy the ability of different
fates to coexist to ensure multistability at steady state,
leading to traveling kinks that might require other specific
mechanisms such as external morphogenetic fields to stabi-
lize (26).
We use a different heuristic. We make two hypotheses:

1) Coupling exponentially dies with cell-to-cell dis-
tance, and

2) Cells in one given state are only coupled to cells in the
same state.

Hypothesis 1 is very generic and reasonable biologically.
Recent quantitative studies have suggested that mechanisms
similar to Hypothesis 2 are at play during development: for
instance, mesodermal cells actively recognize endodermal
cells and react to them to activate tissue segregation (27).
Importantly, this is not done via passive tissue separation,
but instead via an active sensing and modulation of Ephrins
(28). In principle, other signaling pathways such as Notch
could also be potentially used to recognize cells of different
types and enhance pattern stabilization depending on ligand
values (29).

In the absence of well-known mechanisms, we designed a
phenomenological coupling accounting for Hypotheses 1
and 2, which is illustrated in Fig. 5 C. Schematically, the
coupling measures an effective difference between cell ex-
pressions x. No assumptions are made as to how this differ-
ence is expressed or implemented; it is simply assumed that
cells are able to know how different they are from their
neighbors. Based on this difference, the coupling imposes
reaction terms R in the dynamics, with a typical shape dis-
played in Fig. 5 D. This purely phenomenological coupling
imposes that when cells are very different there is no
coupling (R / 0 for big jxj), while the coupling is
maximum when cells are similar but not exactly identical
(intermediate jxj). Reaction force for an identical cell is 0.
The full mathematical expression for this coupling is given
in the Supporting Material.

Movie S3 illustrates the dynamics of such a simulated
embryo using this coupling (to be contrasted with Movie
S4 without specific interaction between fates). Clearly the
coupling rescues the full dynamics of the system, with the
FIGURE 5 Noise sensitivity and rescue. (A)

t-leaping simulations of uncoupled cells, showing

the averages over 30 individual trajectories as a

function of time for different durations of exposure

toM (i–vi). (B) Average final concentration for (C)

as a function of space, assuming cells are arranged

as in Fig. 3 A. (C) Heuristic approach used for the

coupling. (D) Shape of the reaction force used to

model coupling between cells. (E) Average of

30 cells using t-leaping simulations of coupled

cells within a full embryo as a function of time

for different durations of exposure to M (i–vi).

Rescue is almost perfect. (F) Average final concen-

tration for same simulation as in (E). To see this

figure in color, go online.

Biophysical Journal 109(8) 1724–1734
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exception of a small noise in fates for a few cells at the inter-
face between boundaries. Average concentration for cells
exposed to the same duration of M as a function of time is
illustrated in Fig. 5 E, and the final pattern as a function
of space in Fig. 5 F, showing almost perfect rescue. Notable
here is that the long timescale is completely preserved
compared to the short timescale of protein degradations
(1 unit of time), showing that criticality is maintained in
presence of noise and cellular coupling.
DISCUSSION

Balaskas et al. (10) have proposed that some combination of
input amplitude and duration of exposure explained the
cellular fates in neural tube patterning. While influence of
input amplitude is the classical hallmark of Wolpert’s
French Flag Model, we focus on the latter aspect and
show how cellular fates can be sequentially activated and
controlled by duration of exposure to a morphogen. The pro-
posed model explains and allows for critically slow time-
scales leading to multistability, without an explicit timer.

The flow in phase space sequentially visits states of the
system and stabilizes according to the exposure time. This
is different from classical symmetrical bistable systems
where the flow is first rapidly attracted toward the unstable
fixed point when mutual repression is symmetrical (see, e.g.,
Jaeger and Monk (20)). Importantly, we generalize our
model to multiple dimensions. This can be done through a
purely symmetrical network topology, and does not require
any additional gene like in the ACDC model (17).

There have been discussions of the role of well-defined
modules in gene networks, in particular to control timescale
of gene expression (30). Interestingly, the generalized model
presented here works in a very different way, because there
is no modularity at the level of the network topology, in line
with the idea that dynamics in gene networks is more depen-
dent upon parameter than upon topology (31). Indeed, the
observed flow is not symmetrical, and can be generated
with a hierarchical structure at the level of parameters,
where gene i only weakly represses gene i þ 1. This trans-
lates into local flows that are canalized and defined by the
three consecutively expressed genes at any given time
(Fig. 4 B). This model is also parsimonious in the sense
that if we assume Ng genes control Ng different fates, there
is no need for extra genes to implement a timing process
under control of external morphogen.

Noise in individual cells could destroy this critical timing,
but we demonstrated, using a phenomenological model, that
this can be almost fully attenuated by cell coupling between
cells expressing similar genes. It is worth pointing out that
other downstream physical mechanisms could also help in
refining domain boundaries. For instance, cell-sorting asso-
ciated to different Hox genes expression and levels of Shh
signaling in zebrafish neural progenitors has been observed
(32,33). Sensing and sorting could both be done through
Biophysical Journal 109(8) 1724–1734
active regulation of adhesion molecules, as suggested
recently by Fagotto (27) and Fagotto et al. (28). While we
have not accounted for sorting here, this could definitely
add another layer of precision to filter out the small amount
of noise remaining even in presence of cell coupling.

It is not clear how a timer based on criticality would be
more advantageous or more prone to have been selected
than a single slow timer accumulating, as proposed in
François and Siggia (7). Timing that is under control of a
timer is appealing for at least two reasons: the first is that
it can well explain developmental transitions, where dy-
namics of development is changed. This is particularly
important for the case of Hox gens (34). For instance, ances-
tral and short-germ insects have a dynamical mode of
patterning with growth, qualitatively similar to vertebrates,
while long-germ band insects pattern different regions
without growth, under control of presumably static
morphogen gradients. Evolutionary transitions between
these two very different modes can be easily explained if
an accumulating timer is turned into a morphogen (7), im-
plementing a French Flag Model in both cases.

The second reason why a timer model is appealing is
related to scaling of developmental timings with external
parameters such as temperature (35). Such a global control
suggests that very few parameters (such as timescale of ac-
cumulations of a few morphogens) control developmental
timing. Still, in the model proposed here we can tune the
timescale of our model by changing the common coupling
of genes to morphogen M as shown in Fig. 3, C and D, or
by changing the value of the morphogen itself. This is a
feature due to the criticality and in particular to the relative
sensitivity of the timescale to moderate changes of parame-
ters as displayed in Fig. 4 A. If one of these parameters is
externally controlled, e.g., by some temperature-sensitive
variable, it could plausibly account for conservation of rela-
tive timing under different environments. Importantly,
global regulators simultaneously tuning levels of activation
or repression of many developmental genes are known to
exist, such as zld in Drosophila (36), which suggests that
modifications of multiple developmental thresholds to
compensate for global perturbations are (at least in theory)
possible. A way to test between a timer versus a critical
timing mechanism as described here would be to reset
the expression of differentiation genes as illustrated in
Fig. 4 D: a change of relative timing would exclude an inde-
pendent timer, while fast dynamics away from the normal
developmental pathway would suggest critical timing in
the normal unperturbed case.

Importantly, timing effects and differentiation are two in-
terconnected aspects in our generalized model. This is in
line with the idea that evolutionary development can
best be described by geometric properties in phase space
(9,20,37,38). With a small continuous parameter change, a
critical system where one gene is expressed for a very
long time is turned into a system where that gene is stably
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expressed, defining a new steady state. Obviously, this pro-
cess is thus incremental and continuous by essence: indeed
the flow in phase space barely changes past the bifurcation
(Fig. 2), which is the main feature explaining how one can
turn a temporal sequence of expressed genes into a
stable pattern. Furthermore, even far from the bifurcation,
we see a clear effect on the timescale of the dynamics
(Fig. 4 A), suggesting that there is no need for a strong
fine-tuning of parameters in order to see the emergence of
a critical slowing-down. Therefore, both critical timing
and differentiation might actually be quite easy to incremen-
tally evolve: selective pressure imposing longer and
longer expression of some genes could end up selecting
for multistability. Indeed, this exact process was observed
for evolution of bistability in previous computational
evolution works (unpublished evolutionary pathways from
François and Hakim (39)). Criticality could thus be a devel-
opmental signature of incremental evolution of new bifurca-
tions (20,38).

Finally, it should be pointed out that many features stud-
ied here have been observed experimentally in contexts
other than that of vertebrate development (13). Slow time
evolution following the unstable directions along a line of
attractors is very reminiscent of models of decisions in neu-
ral networks (40,41). In particular, sequential activity in
neuron networks has been modeled by a type of winnerless
competition between neurons, with asymmetrical interac-
tions very similar to those between genes that we consider
(42). However, there are two important differences in our
model: first, it is paramount that the developmental system
can stabilize to one of these fixed points by changing a con-
trol parameter; and second, the size of the network is much
smaller than typical neural networks. In Drosophila devel-
opment, gap genes mutually repress, and development ap-
pears to be canalized as a consequence (43,44). Quite
interestingly, criticality due to mutual repression has been
proposed as a major determinant of the boundary positions
between gap domains (15). The big difference inDrosophila
is that development happens under the control of steady
morphogens, following a French Flag Model paradigm.
Timing issues are much less relevant than spatial issues.
Criticality in our model can be observed here on time corre-
lations between genes (see Fig. S4) to be contrasted with the
space correlations observed in Krotov et al. (15). In both
cases, maximum anticorrelation is observed for successively
expressed genes, and is the dynamical signature of canaliza-
tion of the valleys. The observed criticality in Drosophila
might be the trace of some ancestral timing via criticality,
and the latter could still be observed in short-germ insects.
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1 Parameters for 2D model

Rates

N O

Production α 5 5

Degradation γ 1 1

Hill Coefficients hij and hiM
N O M

N - 1 -1

O 5 - -1

Treshholds θij and θiM
N O M

N - 1 1

O 1 - 1

Table 1: Parameters used in the simplified model from Balaskas et al. [1] in matrix form.
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1.1 Parameter for 2D model with the notation of Balaskas et al.

Parameters Matrix Notation Description Value

α - Maximum rate of P 3

β αO Maximum rate of O 5

γ αN Maximum rate of N 5

h1 - Hill coef of N on P 6

h2 - Hill coef of O on P 2

h3 hON Hill coef of N on O 5

h4 hNO Hill coef of O on N 1

h5 hNP Hill coef of P on N 1

k1 - Degradation rate of P 1

k2 γO Degradation rate of O 1

k3 γN Degradation rate of N 1

OcritP - Threshold of O on P 1

NcritP - Threshold of N on P 1

OcritN θNO Threshold of O on N 1

NcritO θON Threshold of N on O 1

PcritN - Threshold of P on N 1

n hOS Hill coef of S on O -1

m hNS Hill coef of S on N -1

- θOS Threshold of S on O 1

- θNS Threshold of S on N 1

Table 2: Corresponding notation for the parameters used in the simplified model of
Balaskas et al. [1]

With the following definition of the Hill function, applied multiplicatively for each
repressor.

Hill(G, θ, h) =
1

1 + (G/θ)h
=


θh

θh+Gh
if h > 0, θ > 0

Gh

θh+Gh
if h < 0, θ > 0

1 if h = 0, θ = 0

(1)
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2 Generating Travelling Waves

Assume an input M1 mediating, under the quasi-static assumption, the output M2

through the Hill function

M2 = α
MH

1

MH
1 + TH

(2)

Let M1 be an decaying exponentially gradient of the form

M1(x, t) = C1 exp(−C2x− C3t) + C4 (3)

then M2(x, t) = M2(M1(x, t)) is the traveling wave shown in figure S1. The necessary
condition αC1 � T , corresponds to a system initially past the saturation point of the
Hill function and ensures that cells initially start with the on-phase of the traveling wave.
The constant C4 sets the minimum concentration of the traveling wave and allowing for
non-zero steady-states in the case of activating morphogens. The parameters of figure
S1 are given in table S3

Parameter Value

α 1

H 5

T .1

C1 5

C2 .25

C3 .5

C4 0

Table 3: Parameters used to generate the traveling wave of figure S1
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Figure S 1: Generating travelling waves from decaying exponential gradients.
Decaying exponential gradients of an input M1 generate traveling waves of the output M2

whenM1 activateM2 through Michaelis-Menten kinetics. A. Snapshots of an exponential
gradient M1 as a function of position for different times. The blue-green color gradient
labels time from early to late. B. Associated concentration profile to (A) as a function
of time for different positions. The red-yellow color gradient labels the position from
anterior to posterior. C. The output M2 is a traveling Hill function as a function of
time. The position red-yellow gradient labels different position. D. The M2 traveling
wave associated to (C) as a function of position. The blue-green gradient labels the time
for each snapshot.
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3 Piecewise fit

Figure 3 F. of the paper shows a piecewise fit of the time course. The yellow points
highlight point which satisfy the valley condition roughly within 2%. That is

|~v+ − ~̇x| < 0.02

and the gray points correspond to an exponentially decaying gene Gi−1 = e−t+t0 and
the two consecutive genes slaved to the decay by the equations (with Hill replaced by
the shorter notation H)

t0 = Time when Gi reaches θi−1,i = 0.4

t1 = Time when Gi−1 ∼ 0.0 and the valley starts

Gi−1(t) = e−t+t0

Ġi(t) = αiH(M, θiM , hiM )H(Gi−1, θi,i−1, hi,i−1)H(Gi+1(t1), θi,i+1, hi,i+1) − γiGi

Ġi+1(t) = αi+1H(M, θi+1,M , hi+1,M )H(Gi−1, θi+1,i−1, hi+1,i−1)H(Gi(t1), θi+1,i, hi+1,i) − γi+1Gi+1

Because Gi−1(t) is a known function and we replace the full time dependence of Gi
on Gi+1 and Gi+1 on Gi by their values at time t1, we obtain two first order ODE in
one variable, the solution of which is an hypergeometric function.

Because the valley lives on a 2D plane between Gi and Gi+1, not all slow points lie
on the valley. As the system approaches the valley, Gi−1 is strongly repressed by Gi and
therefore decays exponentially following e−t+t0 where t0 is a constant which shifts the
curve in time according to which peak is fit. This exponential decay happens perpen-
dicularly to the plane of the valley. As Gi−1 reaches 0, the points agree with the valley
condition. This exponential decay is modeled by the gray lines and it is the transition
between two valleys. On the valley, Gi slowly decreases while Gi+1 slowly increases.
Once Gi+1 reaches θi,i+1 = 0.4 it strongly represses Gi which in turn exponentially
decays following e−t+t0 . The cycle thus continues.
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4 Stochastic analysis

The cell environment is intrinsically noisy because only a finite number of molecules, η,
are interacting. To have a useful model, it needs to be robust to noise, or at least we must
offer an argument for how it can be made more robust. There is an obvious problem
when considering a system that evolves in time stochastically: time compounds noise,
especially in system with sharp transitions such as those we present. The fact that there
is a bifurcation with a time scale finely controlled by the proximity to a critical value
also means that there is a trade off between noise robustness and the ability to produce
domains of variable length. Using the theory of the chemical Langevin equation which
we use to numerically simulate noise using the τ Leaping algorithm [2], we show how
the introduction of a cell coupling rescues patterning even in very noisy environments
(η ∼ 500).

Figures S2 and S3 show ensemble averages of 100 independent trials at a given
noise level, controlled by η, the number of molecules in a given volume. The average
time course resembles the deterministic time course and in the η → ∞ we retrieve the
deterministic solution. However, for smaller η, the peaks’ amplitudes of gene expression
are decaying as a function of time, as the variance increase. As time goes on, the loss
of predictive power makes it impossible to predict which state will be expressed at some
later time t. Due to the trade off between the critical behaviour at the bifurcation,
this worsens as TiM is adjusted to lengthen the domains. To remedy this problem, we
therefore propose a model by which cells interact with each other to reduce noise.
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Figure S2: Noise sensitivity for fast timescales. Stochastic ensemble average of the
oscillating 5D GRN with a fast timescale, θiM = 1.5 and different η. The higher η the
closer to the deterministic result and the variance becomes constrained to the transition
between two genes. For smaller η, the variance increases quickly and the predictive
power is lost. A.-D. represent the values of η = 500, 1500, 5000, 50000.
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Figure S3: Noise sensitivity for slow timescales. Stochastic ensemble average of the
oscillating 5D GRN with a slow timescale, θiM = 1.58 and different η. The GRN with
slow timescale is much more sensitive to the noise than the fast one. The higher η the
closer to the deterministic result and the variance becomes constrained to the transition
between two genes. For smaller η, the variance increases quickly and the predictive
power is lost. A.-D. represent the values of η = 500, 1500, 5000, 50000.
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4.1 Cell averaging

We simulate cell development with a two dimensional cell array. Each cell Cmn is exposed
to a concentration of morphogen Mmn which varies in time and space. We model Mmn

as a traveling wave propagating along the x axis (n index) so that each cell along the y
axis (m index) is exposed to the same concentration of M at a given time.

We postulate cell-to-cell interactions. To model cell interactions we will add interac-
tion rates R to our set of coupled ODEs. The resulting system is not cell autonomous
and requires keeping track of every cell individually. To motivate the form of our in-
teraction term, we note that it is known that cells interact with each other through
many means such as simple diffusion, endocytosis, the use of transport proteins such
proteoglycans or signaling pathways (e.g. Notch). Rather than modeling a particular
form of cell-to-cell interaction, we take a phenomenological effective term. We model
interactions between two cells using the rate function

R(Cmn[Gi]− Cpq[Gi], ξint, σint) = −σint(Cmn[Gi]− Cpq[Gi])
ξint

e
−
(
Cmn[Gi]−Cpq [Gi]

ξint

)2
(4)

where Cmn[Gi], Cpq[Gi] are the concentration of the gene Gi in the two different
cells indexed by (m,n), (p, q) in the cell array, ξint is the length of interaction sets a
concentration scale1 past which the cells do not interact and σint is the strength of
interaction which plays the role of the rate at which the interaction happens.

The purpose of this interaction is to average the difference between two interacting
cells. When Cmn[Gi] − Cpq[Gi] is zero, the function returns zero and there is no inter-
action. When |Cmn[Gi] − Cpq[Gi]| � ξint the cells are deemed dissimilar and they do
not interact (Figure 4C of main text). If |Cmn[Gi] − Cpq[Gi]| . ξint, the cells interact
in such a way as to return to their mean. If Cmn[Gi] > Cpq[Gi], R will be an effective
degradation rate and if Cmn[Gi] < Cpq[Gi], R will be an effective production rate. The
function R is plotted in figure 4D of the main text. By construction, for reasonable
values of ξint, σint , R cannot change the deterministic steady state because it vanishes
at zero and for values much greater than ξint.

To obtain a local interaction at the level of the embryo, we assume all cells inter-
act with each other with an interaction strength that falls off exponentially with their
distance. Define

d(Cmn, Cpq) =
√

(m− p)2 + (n− q)2 (5)

to be the cartesian distance between the two cells at position (m,n) and (p, q) respec-

tively, in the array. Then they interact with an interaction strength σ̃int = σinte
− 1−d

2

such that neighbor cells for which d = 1 interact with strength σint and cells separated
separated by d > 10 interact very little.

1By interaction length, we do not mean physical distance between cell, but difference between gene
concentrations.
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Mmn(t) = Lt
T hmn

T hmn + th

dCmn[Gi]

dt
= αiHill(Smn, θiM , hiM )

∏
hij≤0

Hill(Cmn[Gj ], θij , hij)− λiCmn[Gi]

+ Cmn[Gi]
∑
p6=m

∑
q 6=n

R(Cmn[Gi]− Cpq[Gi], ξint, σint e−
d(Cmn,Cpq)−1

2 )

(6)

Finally, the deterministic coupled ODEs that represent these interactions is given
by Eq. 6 where Tmn is the exposure time which depends on cell position (m,n) and
Hill(G, θ, h) is the Hill function as defined in eq. 1. The chemical Langevin equation is
implemented according to the τ -leaping treating the production and degradation terms
as noisy reactions. The interaction term is assumed to be exact.

4.2 In Silico Evolution selects for ξint, σint

The interaction parameters ξint, σint have to be carefully chosen to counteract two op-
posing forces. If the parameters are too small, the averaging effect will be too weak and
there will be little improvement in noise robustness. If the parameters are too big, then
cells which have been exposed for shorter period of time and have therefore achieved
steady state will bias the expression of cells which are still deciding their fate.

To find suitable values for the interaction parameters, we run the an evolution al-
gorithm. To do so, we create a population of embryos (i.e. cell arrays equipped with
the GRN) each with different parameters ξint, σint. We integrate the the embryo once
deterministically without interaction terms to get C̃mn[Gi](t) and multiple times stochas-
tically with the interaction term to get each time Cmn[Gi](t). Embryos are then ranked
according to their fitness given by Eq. 7 which measures the RMS deviation from the
deterministic timecourse. Survival of the fittest dictates that embryos with bad fitness
are replaced by embryos with better fitness. The population is then mutated by slightly
changing ξint and σint and keeping all other parameters constant.

F = − 1

Nrows

∑
m

1

Ncols

∑
n

1

Ngenes

∑
i

√
1

Nt

∑
t

(C̃mn[Gi](t)− Cmn[Gi](t))2

Favg =
1

Ntries

∑
trials

F

(7)

For the simulation, we used η = 500, Nrows = 100, Ncols = 30, Ngenes = 5, Nt =
5000, Ntries = 5. We set θiS = 1.59 which gives a long timescale. The best parameters
were found to be ξint = 0.0588 and σint = 0.0300. Figure 4 of the main text shows the
ensemble average of the 30 cells per row for different columns for both the uncoupled
and the coupled system. We conclude that cell averaging preserves the timescale and
the predictive power which would otherwise be lost to noise.
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5 Criticality through the correlations as functions of time

Figure S 4: Correlations between genes along the time course. A. Correlations
between adjacent genes iandi + 1. (i): deterministic time course and average (over
500 runs) stochastic time course with N = 250000 molecules and θiS = 1.59. (ii)-(vi):
Correlations between pairs of adjacent genes B. Correlations between non-adjacent genes
i and i + 2. (i): deterministic time course and average (over 500 runs) stochastic time
course with N = 250000 molecules and θiS = 1.59. (ii)-(vi): Correlations between pairs
of non-adjacent genes
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