Supplementary Online Content

Pagliaccio D, Barch DM, Bogdan R, et al. Shared predisposition in the association between cannabis use and subcortical brain structure. *JAMA Psychiatry*. Published online August 26, 2015. doi:10.1001/jamapsychiatry.2015.1054.

eAppendix 1. Family Structure Information and Sibling Pair Creation eAppendix 2. MRI Pre-Processing Information eAppendix 3. Variable Coding Information eAppendix 4. Picture Vocabulary eAppendix 5. Additional Covariates eTable 1. Sibling Pairs by Cannabis Exposure, Zygosity, and Sex eTable 2. Summary of Regression Results Controlling for Additional Covariates eTable 3. Helmert Contrast Coding eTable 4. Relationships Between Covariates and Cannabis Use Variables eTable 5. Descriptive Statistics and Intercorrelations Among Brain Volumes eTable 6. Interrelationships Among Covariates eTable 7. Full Cannabis Exposure Regression Results eTable 8. Full Times Used Regression Results eTable 9. Full Age at Onset Regression Results eTable 10. Volume Relationships With Cannabis Use by Light vs Heavier Use eTable 11. Linear Mixed Model Results for Same-Sex Sibling Pairs eTable 12. Linear Mixed Model Results for All Sibling Pairs eTable 13. Control Analysis Results eFigure. Histogram of Age at Onset and Times Using Cannabis eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix 1. Family Structure Information and Sibling Pair Creation

173 families contributed multiple siblings to the current analysis; 11 families had data available from all four siblings, data from three siblings was available from 79 families, data from two siblings was available from 83 families, and 36 individuals were the only member of their family at the time of the June 2014 data release. This included 48 monozygotic and 45 dizygotic twin pairs where both twins had participated by this data release.

For the discordant sibling analyses, all possible pairings of siblings were drawn from the data (N=368 pairs from 173 families). For example, if all four siblings recruited from a given family had already participated by the current data release, six sibling pairs were created (sib1-sib2, sib1-sib3, sib1-sib4, sib2-sib3, sib2-sib4, sib3-sib4). Thus, any one individual could contributed to multiple paired observations. Sibling pairs were grouped as concordant exposed (both siblings ever used cannabis; N=123), concordant unexposed (both siblings never used cannabis; N=114), or discordant (one sibling reported use while their sibling never used cannabis; N=149). For ease of analysis and interpretability, the cannabis-exposed sibling in a discordant pair was always ordered first in the pair; the order of siblings was pseudo-randomized for concordant pairs to balance the sex and cannabis use distributions across siblings.

Given the confounds noted in the main text, we excluded 145 opposite-sex pairs, resulting in 241 sibling pairs (50 MZ, 45 DZ, and 146 non-twin siblings) of which 89 pairs were discordant for cannabis exposure, 81 were concordant for cannabis exposure, and 71 pairs were concordantly unexposed.

eAppendix 2. MRI Pre-Processing Information

Relevant steps from the HCP processing pipeline included: (1) Down-sampling of the 0.7mm T1w image to 1mm using splines, (2) Intensity normalization and Talairach transformation (-autorecon1), (3) Skull registration, (4) FreeSurfer skull stripping, (5) FreeSurfer subcortical segmentation (-autorecon2), and (6) Extraction of volume statistics (-segstats).

eAppendix 3. Variable Coding Information

Age of onset $(1 \le 14$ years old, 2 = 15 - 17, 3 = 18 - 20, $4 = \ge 21$)

Lifetime frequency of use (1=1-5 times used, 2=6-10, 3=11-100, 4=101-999, 5=>1000)

Total Household Income (1=<\$10,000, 2=10,000-19,999, 3=20,000-29,999, 4=30,000-39,999, 5=40,000-49,999, 6=50,000-74,999, 7=75,000-99,999, 8= >=100,000)

Alcohol use (drinks per day during the 12-month heaviest period of use 0=0, 1=1, 2=2, 3=3, 4=4, 5=5-6, 7=6+ drinks)

Non-cannabis illicit drug use (times used across the lifetime; 0=never, 1=1-2 times, 2=3-10, 3=11-25, 4= males 26-100; females \geq 26, 5=males \geq 100)

Childhood conduct problems (0=0, 1=1, 2=2 for males, ≥ 2 for females, $3=\geq 3$ problem behaviors for males)

These variables were all available as ordinal as part of the HCP data release (none were made ordinal as part of the current analyses).

For further information see, http://www.humanconnectome.org/documentation/

https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500+Subject+Release

eAppendix 4. Picture Vocabulary

Age-Adjusted Scale Scores from the NIH Toolbox Picture Vocabulary Test were included as a covariate in all analyses. The test was administered in a computerized adaptive format. Participants were presented with an audio recording of a word and four images on the computer screen and were asked to select the picture that most closely matched the meaning of the word. Scores are considered to be a measure of receptive vocabulary and a strong proxy of crystallized intelligence abilities. An age-adjusted score of 100 is considered average for one's age based on the NIH Toolbox normative data. Scores around 115 indicate above-average ability while individuals scoring around 130 are in the top $\sim 2\%$ nationally for their age. A score of 85 indicates below-average ability, while a score of 70 or below suggests significant impairment.

eAppendix 5. Additional Covariates

- (a) Tobacco, alcohol, and other illicit drug use are highly comorbid with cannabis use¹, thus these were included a additional covariates to control for potential confounds between substance use and brain volumes: The SSAGA was used to assess alcohol use (drinks per day during the 12-month heaviest period of use), cigarette use (heaviness of smoking index², with those who had smoked <100 cigarettes lifetime coded as 0), and non-cannabis illicit drug use (times used across the lifetime).</p>
- (b) To account for increased cannabis use in individuals with certain psychopathology^{3,4}, which have been occasionally linked to structural variation^{5,6}: Lifetime histories of DSM-IV major depressive disorder diagnosis and childhood conduct problems were also assessed by the SSAGA (see eMethods S3 for variable codings).
- (c) Personality measures have been implicated as correlates of cannabis use⁷ and structural variation⁸: Personality measures included neuroticism, extraversion, openness, agreeableness and conscientiousness scores (from the revised 60-item NEO five factor inventory [NEO-FFI]⁹ completed as part of the Penn Computerized Cognitive Battery^{10,11}).
- (d) Impulsivity underlies cannabis use¹² and may be an index of predisposition to onset of use and may be related to volumetric alterations: A relatively coarse measure of impulsivity was computed from the ADHD subscale of the Achenbach Adult Self-Report (ASR) for Ages 18-59¹³. Specifically, we summed responses to the items: "I am impulsive or act without thinking", "I am too impatient", and "I rush into things without considering the risks". Higher sum scores indicate a higher liability to impulsive behaviors. In addition, scores on a delay discounting task were used as an additional measure of impulsivity/self-regulation. Participants made six economic decisions between a larger, delayed reward (\$200) and a smaller, immediate reward to determine an 'indifference point' where a participant was equally likely to chose the immediate or delayed amount (for details, see ¹⁴⁻¹⁶). We calculated area under the curve (AUC), a validated and reliable index of delay discounting¹⁷; smaller AUC indicates steeper discounting i.e. more impulsivity/less self-regulation.

Both Female2492154Both Male104317Opposite Sex430043Total771324114Concordant Ever PairsSibling PairsDZ PairsMZ PairsTotalBoth Female1991139Both Male288642Opposite Sex420042Total891717123Biscordant PairsSibling PairsDZ PairsMZ PairsTotalBoth Female913567	3.54 4.40 3.60
Opposite Sex430043Total771324114Concordant Ever PairsSibling PairsDZ PairsMZ PairsTotalBoth Female1991139Both Male2886422Opposite Sex420042Total891717123Discordant PairsSibling PairsDZ PairsMZ PairsTotal	
Total771324114Concordant Ever PairsSibling PairsDZ PairsMZ PairsTotalBoth Female1991139Both Male288642Opposite Sex420042Total891717123Discordant PairsSibling PairsDZ PairsMZ PairsTotal	3.60
Concordant Ever PairsSibling PairsDZ PairsMZ PairsTotalBoth Female1991139Both Male288642Opposite Sex420042Total891717123Discordant PairsSibling PairsDZ PairsMZ PairsTotal	
Both Female 19 9 11 39 Both Male 28 8 6 42 Opposite Sex 42 0 0 42 Total 89 17 17 123 Discordant Pairs Sibling Pairs DZ Pairs MZ Pairs Total	3.68
Both Male 28 8 6 42 Opposite Sex 42 0 0 42 Total 89 17 17 123 Discordant Pairs Sibling Pairs DZ Pairs MZ Pairs Total	
Opposite Sex 42 0 0 42 Total 89 17 17 123 Discordant Pairs Sibling Pairs DZ Pairs MZ Pairs Total	4.74
Total891717123Discordant PairsSibling PairsDZ PairsMZ PairsTotal	3.25
Discordant Pairs Sibling Pairs DZ Pairs MZ Pairs Total	3.62
	3.74
Both Female 49 13 5 67	
	3.45
Both Male 16 2 4 22	3.81
Female User-Male Non-User140014	4.64
Male User-Female Non-User460046	4.02
Total 125 15 9 149	3.84

eTable 1. Sibling Pairs by Cannabis Exposure, Zygosity, and Sex

A breakdown of sibling pairs (total N=386) is presented by concordance for cannabis use, pair zygosity, and sex. Pairs consisted of monozygotic twins (MZ, total N=50 pairs), dizygotic twins (DZ, total N=45), or non-twin siblings (total N=291). Pairs were either same-sex (both female or both male) or opposite sex. All twin pairs were same-sex. The ordering of opposite sex pairs was randomized across concordant pairs, but was fixed for discordant pairs based on use. The count of pairs discordant for use and sex is presented split by female user-male non-user vs. male user-female non-user pairs. The final column presents mean age differences between individuals in non-twin sibling pairs, split by sex concordance, as well as overall mean values for each cannabis use discordance group.

	Cannabis Exposure - Ever vs. Never Used (N=483)			Among Ex	Amount o posed Ind (N=262)		Age of Onset Among Exposed Individuals (N=262)		
Volume (mm ³)	b	t	р	b	t	р	b	t	р
Whole Brain	-1807.514	-0.216	0.829	-9438.681	-2.236	0.026	-1646.645	-0.289	0.773
Left Amygdala	-34.056	-2.369	0.018	-0.512	-0.068	0.946	-0.046	-0.005	0.996
Right Amygdala	-22.143	-1.463	0.144	-8.728	-1.148	0.252	1.716	0.170	0.865
Left Hippocampus	-38.097	-1.028	0.304	-46.840	-2.293	0.023	24.257	0.891	0.374
Right Hippocampus	9.156	0.277	0.782	-22.543	-1.290	0.198	28.763	1.246	0.214
Left Ventral Striatum	-5.459	-0.683	0.495	-1.006	-0.233	0.816	1.986	0.349	0.728
Right Ventral Striatum	-20.355	-2.428	0.016	-3.910	-0.878	0.381	0.908	0.154	0.878
Left Orbitofrontal Cortex	-20.214	-0.239	0.811	9.775	0.218	0.828	-50.560	-0.855	0.393
Right Orbitofrontal Cortex	22.907	0.295	0.768	1.026	0.025	0.980	-15.913	-0.289	0.773

eTable 2. Summary of Regression Results Controlling for Additional Covariates

Unstandardized (b) regression coefficients and their associated t- and p-values for the effects of cannabis exposiure, age of onset, and lifetime quantity of use from separate linear regression models predicting whole brain or regional volume. Regressions controlled for sex, age, ethnicity (White vs. not; African American vs. not), zygosity (Monozygotic vs. not; Dizygotic vs. not), alcohol use, cigarette use, non-cannabis illicit drug use, self-reported impulsivity, NEO-FFI scores, delay discounting, major depressive disorder history, childhood conduct problems, and whole brain volume (when predicting regional volumes). Negative regression coefficients indicate smaller volumes for exposed vs. unexposed individuals, with later age of onset, or greater lifetime quantity of use. Effects significant at p<0.05 are in bold.

eTable 3. Helmert Contrast Coding

	Contrast 1 Causal Hypothesis	Contrast 2 Graded Liability Hypothesis	Contrast 3 Predispositional Hypothesis
Unexposed Individual from Discordant Pair	-1	-1	-1
Exposed Individual from Discordant Pair	1	-1	-1
Concordant Exposed Pairs	0	2	-1
Concordant Unexposed Pairs	0	0	3

The Helmert contrast coding scheme for the linear mixed model analyses is presented here. Contrast 1 compares exposed and unexposed siblings from discordant pairs. Contrast 2 compares individuals from concordant exposed pairs to individuals from discordant pairs. Contrast 3 compares individuals from concordant unexposed pairs to all other groups.

eTable 4. Relationships Between Covariates and Cannabis Use Variables

Variable	Test	Cannabis Age of Onset	Cannabis Times Used
Sex (F>M)	t-test	2.36*	-5.39***
Age (years)	Correlation	0.05	122*
White or Not	t-test	0.05	-2.19*
African American or Not	t-test	1.27	2.17*
Monozygotic or Not	t-test	-0.83	-0.30
Dizygotic or Not	t-test	0.55	-0.58
Total Household Income	Correlation	0.11	-0.23***
Age-Adjusted Picture Vocabulary	Correlation	0.08	-0.05
NEO Contentiousness	Correlation	0.04	-0.04
NEO Extraversion	Correlation	-0.01	-0.03
NEO Neuroticism	Correlation	0.02	-0.04
NEO Openness	Correlation	-0.07	0.28**
NEO Agreeableness	Correlation	0.16**	017**
Delay Discounting	Correlation	-0.04	0.09
Impulsivity	Correlation	-0.11	0.09
Alcohol Use	Correlation	-0.22**	0.30**
Cigarette Use	Correlation	-0.35**	0.36**
Illicit Drug Use	Correlation	034**	0.53**
Depression History	t-test	-1.20	2.03*
Childhood Conduct Problems	Correlation	-0.20**	0.24**

Ordinal variables for age of onset of cannabis use and lifetime times using cannabis were related to all covariates of interest by either t-test (for binary covariates) or correlation. Thus, values represent t-statistics for t-test results and Pearson's r for correlations. Note that earlier age of onset relates to more lifetime use (r(260)= -0.42, p<0.001), so observed relationships with covariates tend to be in opposite directions for these two variables, i.e. females begin using cannabis at a later age and use less over their lifetime. * p<0.05, ** p<0.01, *** p<0.001

eTable 5. Descriptive Statistics and Intercorrelations Among Brain Volumes

					Int	er-Cor	relatio	ons		
			Left	Right	Left	Right	Left	Right	Left	Right
	Mean	SD	Amyg	Amyg	HC	HC	VS	VS	OFC	OFC
Whole Brain Volume	1116835.18	112422.14	0.71	0.72	0.67	0.71	0.55	0.57	0.83	0.84
Left Amygdala (Amyg)	1526.22	192.22		0.81	0.68	0.67	0.42	0.44	0.57	0.60
Right Amygdala (Amyg)	1610.18	204.61			0.65	0.66	0.42	0.41	0.57	0.60
Left Hippocampus (HC)	4344.16	465.88				0.78	0.39	0.34	0.46	0.53
Right Hippocampus (HC)	4406.23	439.93					0.44	0.44	0.48	0.57
Left Ventral Striatum (VS)	557.04	92.45						0.70	0.53	0.55
Right Ventral Striatum (VS)	597.09	98.02							0.57	0.59
Left Orbitofrontal Cortex (OFC)	12369.45	1417.05								0.82
Right Orbitofrontal Cortex (OFC)	12233.55	1339.60								

Mean and standard deviation (SD) values are presented for each brain volume of interest (N=483). Pearson's correlation between all volumes of interest were also presented. All correlations were significant p<0.001.

eTable 6. Interrelationships Among Covariates

	Age	White	African Am.	MZ Twin	DZ Twin	NEO-C	NEO-E	NEO-N	NEO-O	NEO-A	Delay Disc.	Impuls.	Alcohol	Cig.	Illicit	MDD	Conduct
Sex (F>M)	0.63		0.06	13.81***		2.52*	0.37	3.02**		3.32**	-1.01	-2.54*	-2.64**	-2.58*	-4.20***	0.00	-0.29**
Age (years)		2.03*	-1.70	3.33**	2.97**	0.07	0.00	-0.03	-0.12*	0.11*	0.03	-0.15**	0.02	0.11*	0.02	-0.64	0.03
White or Not			-	11.55**	0.72	-1.12	1.60	0.29	-1.11	3.93***	7.09***	-1.12	3.43**	-0.49	0.77	2.81	-0.12**
African Am. or Not				7.02*	0.33	2.02*	-1.05	-1.09	0.57	-2.89**	-7.31***	0.44	-3.83***	0.92	-1.92	1.43	0.09
Monozygotic or Not					-	4.65***	3.86***	-2.37*	-2.38*	4.78***	0.42	-4.18***	0.63	-0.07	-0.85	2.41	-0.10*
Dizygotic or Not						-1.42	-1.05	0.14	-1.55	0.81	-1.23	-2.22*	-0.60	1.24	0.34	0.63	-0.07
NEO Contentiousness							0.35**	-0.42**	-0.06	0.24**	-0.04	-0.26**	0.03	-0.02	-0.11*	-2.26*	-0.03
NEO Extraversion								379**	0.06	0.34**	-0.01	-0.02	0.14**	-0.01	0.01	-4.49***	-0.03
NEO Neuroticism									0.01	-0.29**	-0.03	0.24**	-0.06	-0.01	-0.01	5.20***	0.07
NEO Openness										0.13**	0.08	0.00	0.05	0.03	0.19**	2.70**	0.11*
NEO Agreeableness											.090*	031**	-0.11*	-0.17**	-0.10*	-2.20*	-0.27**
Delay Discounting												-0.08	-0.07	-0.13**	0.03	1.79	0.00
Impulsivity													0.06	0.01*	0.02	1.94	0.12**
Alcohol Use														0.28**	0.31**	-0.31	0.14**
Cigarette Use															0.36**	0.61	0.11*
Illicit Drug Use																0.89	0.27**
Depression History																	0.01**

Depression History

0.21**

Values represent t-statistics when comparing a binary and a continuous variable by independent-samples t-test, ch² statistics when comparing two binary variables, or Pearson's r coefficients relating two continuous variables. Sex, ethnicity, zygosity, and depression history are binary variables. * p<0.01, *** p<0.001

	WBV	L. Amyg.	R. Amyg.	L. Hipp.	R. Hipp.	L. Accumb.	R. Accumb.	L. OFC	R. OFC
Intercept	1114080.197***	523.688***	405.275**	1426.197***	1540.894***	50.159	163.683*	1555.591*	1918.633**
Cannabis Use	-6684.224	-34.676**	-20.644	-29.514	14.900	-0.585	-20.866**	-88.716	-21.509
Whole Brain Volume	-	0.001***	0.001***	0.002***	0.002***	0.001***	0.001***	0.01***	0.01***
Sex (F>M)	-145402.729***	-71.587***	-51.932**	-45.333	-62.71	10.119	-3.252	-46.98	21.655
White or Not	39478.07*	-4.96	13.682	138.584	252.801***	-27.226	-11.341	-55.404	-13.105
African American or Not	-2721.389	-11.602	-1.853	65.114	220.602**	-1.623	8.176	-108.448	-86.000
Age (years)	-1684.557	-1.357	-0.442	1.997	0.798	-2.031.	-3.129**	-16.84	-34.557**
Monozygotic or Not	-9596.319	-3.394	-11.872	-113.456**	-47.686	-9.438	-10.208	-174.268.	-144.654
Dizygotic or Not	3431.441	17.936	16.554	-61.935	-56.675	-18.192*	-3.469	-69.531	-69.696
Income	6715.404***	3.38	2.41	-2.55	-2.55	13.368	-1.80	-1.75	29.65
Picture Vocabulary	937.851***	-0.44	-0.41	1.62	1.62	1.22	0.38	0.00	0.08

Unstandardized regression coefficients for cannabis exposure (ever vs. never used cannabis) and all covariates predicting whole brain volume and left and right amygdala, hippocampus, ventral striatum, and orbitofrontal cortex volumes are presented. Significant effects are in bold. * p<0.05, ** p<0.01, *** p<0.001

eTable 8.	Full Times	Used	Regression	Results
-----------	------------	------	------------	---------

eTable 8. Full Times	Ŭ		1		1	I	1	I	I
	WBV	L. Amyg.	R. Amyg.	L. Hipp.	R. Hipp.	L. Accumb.	R. Accumb.	L. OFC	R. OFC
Intercept	1148775.959***	487.155**	487.577**	2035.91***	2147.548***	126.569	220.057*	1724.505	3044.788***
Cannabis Use	-6568.307	-4.723	-10.497	-31.834	-15.578	0.256	-2.834	-26.001	-39.727
Whole Brain Volume	-	0.001***	0.001***	0.002***	0.002***	0.001***	0.001***	0.010***	0.009***
Sex (F>M)	-162659.104***	-71.631**	-67.823**	-78.05	-94.895	3.584	-18.274	-88.973	-211.221
White or Not	32149.864	-13.079	-5.416	103.305	154.803.	-21.465	-3.088	-40.713	67.811
African American or Not	242.661	-16.501	-16.268	11.313	52.563	1.856	12.643	-165.457	29.456
Age (years)	-2452.965	0.308	-0.261	-9.220	-6.608	-2.129	-2.825	-27.889	-32.023*
Monozygotic or Not	-4965.48	-34.71	-29.256	-92.885	-57.716	-9.393	-12.469	-192.975	-276.029*
Dizygotic or Not	1123.352	-8.526	-9.297	-83.447	-67.827	-11.714	-2.038	-128.261	-208.752.
Income	6034.039*	7.27	1.72	14.93	14.93	32.772**	-2.03	-1.55	29.66
Picture Vocabulary	1054.727**	-1.053.	-0.56	-0.92	-0.92	-0.30	-0.09	-0.12	3.64

Unstandardized regression coefficients for times using cannabis among exposed individuas (N=262) and all covariates predicting whole brain volume and left and right amygdala, hippocampus, ventral striatum, and orbitofrontal cortex volumes are presented. Significant effects are in bold. * p<0.05, ** p<0.01, *** p<0.001

eTable 9.	Full Age at	Onset Regression	Results
-----------	-------------	-------------------------	---------

	WBV	L. Amyg.	R. Amyg.	L. Hipp.	R. Hipp.	L. Accumb.	R. Accumb.	L. OFC	R. OFC
Intercept	1119521.438***	453.069**	411.452*	1799.812***	2012.669***	126.42	198.645*	1566.643	2753.595**
Cannabis Use	721.671	2.347	5.578	21.933	29.314	1.792	2.33	-15.677	24.066
Whole Brain Volume	-	0.001***	0.001***	0.003***	0.002***	0.001***	0.001***	0.010***	0.009***
Sex (F>M)	-155918.707***	-65.874**	-55.155*	-41.383	-83.441	2.601	-15.141	-47.293	-164.308
White or Not	32644.176	-13.826	-7.229	95.681	143.199	-22.237	-3.926	-32.708	59.696
African American or Not	-1758.147	-19.233	-22.599	-11.475	28.134	0.632	10.345	-160.066	3.381
Age (years)	-2343.358	0.391	-0.08	-8.724	-6.559	-2.153	-2.785	-27.134.	-31.369*
Monozygotic or Not	-6841.627	-35.534	-30.996	-96.912	-55.055	-8.869	-12.734	-204.637	-281.879*
Dizygotic or Not	580.846	-8.853	-10.01	-85.421	-68.094	-11.624	-2.2	-131.135	-211.34
Income	6936.764*	7.747	2.76	17.79	17.79	33.118**	-2.16	-1.32	33.90
Picture Vocabulary	1047.632**	-1.083	-0.63	-1.16	-1.16	-0.56	-0.11	-0.14	3.69

Unstandardized regression coefficients for cannabis age of onset among exposed individuals (N=262) and all covariates predicting whole brain volume and left and right amygdala, hippocampus, ventral striatum, and orbitofrontal cortex volumes are presented. Significant effects are in bold. * p<0.05, ** p<0.01, *** p<0.001

eTable 10. Volume Relationships With Cannabis Use by Light vs Heavier Use

	Left An	nygdala		Right Ventral Striatum			
	Robust Coefficient	t	р	Robust Coefficient	t	р	
Intercept	533.252	3.71	<0.001	170.499	2.38	0.018	
Cannabis Use <100 times	-32.479	-2.37	0.019	-19.549	-2.30	0.023	
Cannabis Use ≥100 times	-43.323	-2.25	0.026	-26.663	-2.25	0.025	
Whole Brain Volume	0.001	9.25	<0.001	.0004	10.94	<0.001	
Sex (F>M)	-74.784	-3.47	0.001	-5.629	-0.52	0.603	
White or Not	-5.592	-0.21	0.832	-11.907	-0.69	0.489	
African American or Not	-12.950	-0.45	0.657	6.916	0.36	0.721	
Age (years)	-1.472	-0.74	0.460	-3.218	-2.42	0.017	
Monozygotic or Not	-2.062	-0.12	0.908	-9.192	-0.85	0.395	
Dizygotic or Not	18.900	1.25	0.214	-2.675	-0.26	0.792	
Income	3.350	1.02	0.307	-1.714	-0.77	0.444	
Picture Vocabulary	-0.410	-0.75	0.454	0.023	0.07	0.943	
Test comparing coefficients for cannabis use <100 vs. ≥100 times	F(1, 204)=0.32, p=0.574			F(1, 204)=	0.35, p=0.5	53	

Analyses conducted in STATA with dummy coded variables representing lifetime cannabis use of <100 and \geq 100 times, with never use as the reference group. Individual estimates indicate that both dummy codes (<100 and \geq 100 times) are significantly associated with brain volumes. Post-hoc comparisons between the estimates for each dummy tested whether the difference between the coefficients for <100 and \geq 100 times could be equated to zero (i.e. not statistically different from each other). A non-significant result indicates that there are no significant differences in the magnitude of association between brain volumes and using cannabis <100 and \geq 100 times. A robust sandwich variance estimator was used to adjust standard errors for familial clustering.

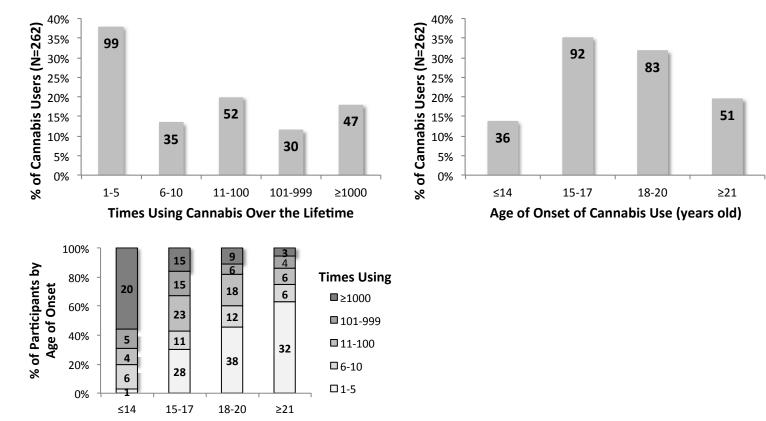
.

Effect	WBV	L. Amyg	R. Amyg	L. HC	R. HC	L. VS	R. VS	L. OFC	R. OFC
Intercept	1055403.1***	338.80**	140.70	872.60**	895.00***	78.020	169.30*	93.330	2333.00***
Whole Brain Volume	-	0.001***	0.001***	0.003***	0.003***	0.001***	0.001***	0.011***	0.01***
Sex (F>M)	-142727***	-43.98#	-5.431	-0.151	-3.560	16.720	5.454	173.000	44.490
White or Not	17771.10	37.350	14.390	117.700	125.900	-47.07*	-6.592	-126.200	-27.990
African American or Not	-11327.00	39.860	-13.710	73.310	139.700	-21.000	11.850	-32.470	-83.420
Age (years)	188.800	-0.496	-0.139	5.345	2.868	-2.082#	-3.011*	-15.490	-48.78***
Monozygotic vs. Sibling Pair	-918.800	-14.990	-14.400	-87.49*	-7.614	-5.892	-14.580	-22.470	-28.920
Dizygotic vs. Sibling Pair	2714.000	7.459	15.390	-40.200	-35.670	-12.690	-6.443	85.380	-12.800
Income	4799.9**	1.779	-2.542	-6.074	0.951	-1.479	-4.572*	-15.140	-13.730
Picture Vocabulary	970.5***	0.691	0.388	4.373***	4.914***	-0.225	-0.399	1.090	-0.808
Contrast 1	-6274.600	-7.431	-1.961	16.430	23.810	-1.221	-1.628	59.520	-30.180
Contrast 2	-3523.900	4.312	-0.902	1.098	4.899	-1.785	-2.151	-12.600	-10.380
Contrast 3	1803.400	12.56**	7.743#	6.028	-9.214	-2.088	2.731	8.593	4.190

eTable 11. Linear Mixed Model Results for Same-Sex Sibling Pairs

Estimates of fixed effects from the linear mixed model analyses examining same-sex sibling pairs are presented. Effects significant at p<0.05 are in bold; significant effects of the Helmert contrasts (eTable 2) are shaded gray. #p<0.10, *p<0.05, **p<0.01, ***p<0.001

eTable 12. Linear Mixed Model Results for All Sibling Pairs


Effect	WBV	L. Amyg	R. Amyg	L. HC	R. HC	L. VS	R. VS	L. OFC	R. OFC
Intercept	1067574.5***	386.7***	184.50#	803.10**	1049.00***	96.57#	159.00**	1135.00*	1607.00***
Whole Brain Volume	-	0.001***	0.001***	0.003***	0.003***	0.001***	0.001***	0.011***	0.01***
Sex (F>M)	-144400.3***	-66.01***	-23.940	-33.350	-22.730	5.597	-0.770	33.540	24.190
White or Not	25077.000	32.560	-12.320	98.530	233.9***	-41.03*	-9.898	-208.200	19.730
African American or Not	-8892.600	31.870	-25.930	83.030	239**	-15.070	8.002	-261.000	-103.300
Age (years)	-791.700	1.110	1.003	6.062	2.494	-1.928*	-2.957**	-17.97#	-29.68***
Monozygotic vs. Sibling Pair	-2823.200	-6.607	-6.625	-72.07#	1.103	-1.335	-14.45#	-30.890	-62.370
Dizygotic vs. Sibling Pair	1026.700	11.490	23.890	-34.360	-45.630	-10.670	-6.308	78.370	-34.870
Income	4836.3***	2.815	-1.324	-2.121	8.665	-2.441#	-3.082*	-12.320	-22.43#
Picture Vocabulary	1237***	0.454	0.534	3.789***	3.003**	-0.093	-0.312	-0.488	1.959
Sex Concordant vs. Discordant Pair	-9268.400	-7.066	-9.236	29.120	5.840	-1.617	4.582	-101.700	-71.410
Contrast 1	8125.200	-25.88**	-13.440	-18.530	-25.090	-5.044	-16.2**	0.867	-39.630
Contrast 2	-2892.900	0.103	-0.294	-5.580	4.891	-3.060	-4.179#	-26.590	-10.590
Contrast 3	1665.000	9.511**	5.800	7.149	-3.367	-0.767	3.414#	-2.388	7.950
Contrast 1 x Sex Concordance	-14930.5*	19.280	11.830	37.120	50.81#	3.517	14.91*	53.590	17.340

Estimates of fixed effects from the linear mixed model analyses examining all sibling pairs are presented. Effects significant at p<0.05 are in bold; significant effects of the Helmert contrasts (eTable 2) are shaded gray. #p<0.10, *p<0.05, **p<0.01, ***p<0.001

eTable 13. Control Analysis Results

	Discordant Users v	Discordant Users vs. Unrelated Individuals			
	t	p-value			
Whole Brain Volume	-1.69	0.09			
Left Amygdala	-3.44	0.001			
Right Amygdala	-1.69	0.09			
Left Hippocampus	-0.99	0.33			
Right Hippocampus	-0.41	0.68			
Left Ventral Striatum	0.34	0.74			
Right Ventral Striatum	-1.24	0.22			
Left Orbitofrontal Cortex	-1.72	0.09			
Right Orbitofrontal Cortex	-1.98	0.05			

We compared the cannabis-exposed individuals from same-sex discordant pairs (N=89) with unrelated but sex-matched unexposed individuals using a pair t-test. T-statistics and their associated p-value for the paired t-test are presented.

eFigure. Histogram of Age at Onset and Times Using Cannabis

Age of Onset of Cannabis Use (years old)

eReferences

- 1. Kandel D, Yamaguchi K. From beer to crack: developmental patterns of drug involvement. *American Journal of Public* 1993;83(6):851–855. doi:10.2105/AJPH.83.6.851.
- 2. Heatherton TF, Kozlowski LT, Frecker RC, Rickert W, Robinson J. Measuring the heaviness of smoking: using self-reported time to the first cigarette of the day and number of cigarettes smoked per day. *Br J Addict*. 1989;84(7):791–799.
- 3. Patton GC, Coffey C, Carlin JB, Degenhardt L, Lynskey M, Hall W. Cannabis use and mental health in young people: cohort study. *BMJ*. 2002;325(7374):1195–1198.
- 4. Elkins IJ, McGue M, Iacono WG. Prospective Effects of Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, and Sex on Adolescent Substance Use and Abuse. 2007;64(10):1145–1152. doi:10.1001/archpsyc.64.10.1145.
- 5. Hajek T, Kopecek M, Kozeny J, Gunde E, Alda M, Höschl C. Amygdala volumes in mood disorders Meta-analysis of magnetic resonance volumetry studies. *Journal of Affective Disorders*. 2009;115(3):395–410. doi:10.1016/j.jad.2008.10.007.
- 6. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-Analysis of Structural Imaging Findings in Attention-Deficit/Hyperactivity Disorder. *Biological Psychiatry*. 2007;61(12):1361–1369. doi:10.1016/j.biopsych.2006.06.011.
- 7. Vink JM, Nawijn L, Boomsma DI, Willemsen G. Personality differences in monozygotic twins discordant for cannabis use. *Addiction*. 2007;102(12):1942–1946. doi:10.1111/j.1360-0443.2007.02008.x.
- 8. Lewis GJ, Panizzon MS, Eyler L, et al. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality. *NeuroImage*. 2014;103:309–315. doi:10.1016/j.neuroimage.2014.09.043.
- 9. McCrae RR, Costa PT Jr. A contemplated revision of the NEO Five-Factor Inventory. *Personality and Individual Differences*. 2004;36(3):587–596. doi:10.1016/S0191-8869(03)00118-1.
- 10. Gur R. Computerized Neurocognitive Scanning: I. Methodology and Validation in Healthy People. *Neuropsychopharmacology*. 2001;25(5):766–776. doi:10.1016/S0893-133X(01)00278-0.
- 11. Gur RC, Richard J, Hughett P, et al. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation. *Journal of Neuroscience Methods*. 2010;187(2):254–262. doi:10.1016/j.jneumeth.2009.11.017.
- 12. Wrege J, Schmidt A, Walter A, et al. Effects of Cannabis on Impulsivity: A Systematic Review of Neuroimaging Findings. *Curr Pharm Des.* 2014;20(13):2126–2137. doi:10.2174/13816128113199990428.

- 13. Achenbach TM. Achenbach System of Empirically Based Assessment (ASEBA). University of Vermont Research Center of Children Youth & Families; 2009.
- 14. Estle SJ, Green L, Myerson J, Holt DD. Differential effects of amount on temporal and probability discounting of gains and losses. *Memory* & *Cognition*. 2006;34(4):914–928.
- 15. Green L, Myerson J, Shah AK, Estle SJ, Holt DD. Do adjusting-amount and adjusting-delay procedures produce equivalent estimates of subjective value in pigeons? *J Exp Anal Behav*. 2007;87(3):337–347.
- 16. Barch DM, Burgess GC, Harms MP, et al. Function in the human connectome: Task-fMRI and individual differences in behavior. *NeuroImage*. 2013;80(C):169–189. doi:10.1016/j.neuroimage.2013.05.033.
- 17. Myerson J, Green L, Warusawitharana M. Area under the curve as a measure of discounting. *J Exp Anal Behav*. 2001;76(2):235–243. doi:10.1901/jeab.2001.76-235.