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Supplementary Table 1 

 
 

 Population  

size 

Prediction quality 

(flexible, 

standard) 

Fig. 5 

p MR 

 (hom, 

het) 

Fig. 6 

p NMR 

  

(hom, 

het) 

Fig. 7 

p 

Main text 126 0.69, 0.53 <0.0001 0.47, 0.62 <0.0001 1.32, 

1.58 

<0.0001 

Least phase-

sensitive units 

63 0.69, 0.51 <0.0001 0.48, 0.64 <0.0001 1.24, 

1.58 

<0.0001 

Most phase-

sensitive units  

63 0.69, 0.55 <0.0001 0.47, 0.61 <0.0001 1.45, 

1.61 

0.02 

Filter 

properties 

from gratings 

41 0.7, 0.51 <0.0001 0.41, 0.62 <0.0001 0.93, 

1.53 

<0.0001 

Most well-

isolated single 

units  

30 0.74, 0.64 0.004 0.43, 0.57 0.002 1.14, 

1.5 

0.005 

Full 

population 

207 0.58, 0.5 0.0001 0.57, 0.69 <0.0001 1.35, 

1.47 

0.005 

 

Supplementary Table 1. Results were robust to neuronal exclusion criteria, isolation quality, and 
method for defining model filter properties. The first row contains the values reported in the main text, 
as a reference. The second and third rows show results for the median split based on the neurons phase 
sensitivity index, F1/F0 (Supplementary Figure 6). We obtained similar results in the halves of the data, 
alleviating concern about the use of a quadrature pair to represent the RF. The fourth row shows results 
when the filters for the RF center and surround were based on measurements of spatial frequency and 
orientation tuning made with static gratings (Supplementary Figure 7). The fifth row shows results for 
only the most well-isolated single units (waveform SNR>2.75, as defined in Kelly et al. J Neurosci 27, 
261-264 (2007)). The bottom row includes neurons that were excluded from the analysis of the main text, 
because they were not strongly surround-modulated. All reported results were thus robust to any of the 
selection criteria used.



 
 

Supplementary Modeling 

1. Bayesian model and image statistics 
The Bayesian model we used has been described in detail in previous publications (Coen-Cagli et al., 

Advances in NIPS 369–377, 2009; Coen-Cagli et al., PLoS Comput Biol 8, e1002405, 2012). For related 

work, see (Schwartz and Simoncelli, Nat Neurosci 4, 819-825, 2001; Schwartz et al., Neural Comput 18, 

2680-2718, 2006; Guerrero-Colon et al., IEEE ICIP 565-568, 2008; Hammond and Simoncelli, IEEE 

Trans Im Proc 17, 2089-2101, 2008; Karklin and Lewicki, Nature 457, 83-86, 2009). Here we provide a 

brief description of the model, and of the specific implementation used to compare to neuronal responses. 

 

Visual filters and the Bayesian model 

Our Bayesian model was a generative model, the Mixture of Gaussian Scale Mixture (MGSM), that 

captures the characteristic dependencies between the outputs of neighboring filters, when these are 

applied to natural images (Coen-Cagli et al., Advances in NIPS 369 – 377, 2009; Schwartz et al., Neural 

Comput 18, 2680-2718, 2006; Wainwright et al., Appl Comput Harmon Anal 11, 89-123, 2001). In our 

case, the MGSM considers the outputs of two groups of visual filters, representing the RF and surround of 

a neuron. We derived the V1-like filters from a steerable pyramid (Simoncelli et al., IEEE Trans Inf 

Theory 38, 587-607, 1992; Portilla and Simoncelli, Int J Comp Vis 40, 49-70, 2000) and defined the filter 

outputs—k and s, as explained in the Methods—as the dot product between an image and the filters.  

When the filters are applied to homogeneous images, their outputs are dependent, because of global 

properties of the image. In this case, the filter outputs k and s are generated in the MGSM by multiplying 

local Gaussian variables by the same positive, scalar random variable denoted by ν  (termed the mixer). 

The local Gaussian variables—κ and σ , with the same dimensionality as k and s—capture the strength 

of local image features in the RF and surround, respectively. Thus, the RF and surround filter outputs are 

given by:  

(Eq. S1) 
νκ
νσ
=

 =

k
s  

While the dependencies between the elements of κ and σ  are fully described by a covariance matrix 

( )κσC , the joint probability distribution of the elements of k and s also have a variance dependence, 

because the multiplication by the common mixer ν  scales both variances similarly. This variance 

(“bowtie”) dependence is a hallmark feature of applying V1-like filters to natural images (Schwartz and 

Simoncelli, Nat Neurosci 4, 819-825, 2001; Wainwright et al., Appl Comput Harmon Anal 11, 89-123, 
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2001).   

When the filters are applied to heterogeneous images, the filters’ outputs are independent. In this 

case, the filter outputs are generated as follows: 

(Eq. S2) u
νκ
σ

=
 =

k
s  

where u  is a mixer variable independent of ν , and κ and σ  are described by two separate 

covariance matrices ( )κC and ( )σC .  

 

Inference in the Bayesian model and divisive surround normalization  

To specify the relation between the Bayesian model and the response of a neuron to an image, we 

assumed that V1 neurons aim to compute an optimal estimate of the local content of the image inside the 

RF, and thus to remove redundancy with the representation of nearby filters. This assumption is steeped 

in a rich literature that has argued that cortex tries to achieve an efficient representation by reducing 

redundancy (Attneave, Psychol Rev 61, 183, 1954; Barlow, in Sensory Communication, 217-234, MIT 

Press, 1961; Dayan and Abbott, Theoretical neuroscience, MIT Press, 1999), and that has shown that 

many aspects of cortical responses can be explained by this simple computational goal (Schwartz and 

Simoncelli, Nat Neurosci 4, 819-825, 2001; Simoncelli and Olshausen, Annu Rev Neurosci 24, 1193-

1216, 2001; Olshausen and Field, Nature 381, 607-609, 1996; Bell and Sejnowski, Vision Res 37, 3327-

3338, 1997; Simoncelli, Curr Opin Neurobiol 13, 144-149, 2003; Zhaoping, Network 17, 301-334, 2006).  

In the context of the MGSM, the local feature in the target neuron RF (defined, for instance, by a filter of 

preferred orientation θ  and spatial frequency ω ) is represented by the value of the underlying 

Gaussian variable ( ,θ ωκ ). Intuitively, given the observed sensory inputs (k and s), one could compute 

,θ ωκ  by inverting (Eq. S1) or (Eq. S2), which amounts to the division of k  by ν . However, whether the 

outputs are dependent (i.e. (Eq. S1) applies) or independent (i.e. (Eq. S2) applies) for a given image is not 

known, and ν  is also not observed directly. Instead, according to Bayesian inference, an estimate ,θ ωκ  

can be obtained by integrating out those unobserved variables (for the full analytical derivation see Coen-

Cagli et al., Advances in NIPS 369–377, 2009; Schwartz et al., Neural Comput 18, 2680-2718, 2006). 

This operation, termed marginalization, is a general Bayesian prescription to ignore nuisance variables, 

and has recently been linked to divisive normalization in other contexts as well (Beck et al. J Neurosci 31, 

15310-15319, 2011).  
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If we introduce a binary variable ξ  and denote the inferred probability that the filters are 

dependent or independent as ( )1 | ,p ξ ξ= k s  and ( )0 | ,p ξ ξ= k s , respectively, then the estimate of 

,θ ωκ  is given by: 

(Eq. S3) ( ) ( ), ,
0, 1

( ) ( )

| |
| , ,

| |
|

k k
p pθ ω θ ω

θ ω
κσ κ

κ ξ ξ ξ ξ
λ λ

= +≈ =k s k s  

where: 

(Eq. S4) 
( ) ( )

( ) ( ) ( )

1
( ) ( )

1 1 1
( ) ( ) ( ), , ,

1 1, 1 , 1

,

2

,

k k s k k s

k k

n n n

i j i j i ji j i j

n n n

i j i
i j

ij j nn

κσ κσ

κσ κσ κσ

λ

+

= =

−

+
− − −

= =+ +

+

=

= + ∑∑ ∑∑

k s C k s

C k k C s s C k s



 

and 

(Eq. S5) ( )1 1
( ) ( ) ( ) ,

, 1

kn

i
i

j
i jjκ κ κλ − −

=

= = ∑kC k C k k   

with kn  indicating the number of center filters, and sn  the number of surround filters.  

The term ( )1 | ,p ξ ξ= k s in (Eq. S3) represents the inferred posterior probability that the filter 

outputs are statistically dependent. This probability can also be computed analytically (Coen-Cagli et al., 

Advances in NIPS 369–377, 2009; Schwartz et al., Neural Comput 18, 2680-2718, 2006): 

(Eq. S6) 

( ) ( ) ( )

( )
( ) ( )

( )

1
2( )

1 1 1

)

1

(

1

2 det

| , , |

1 ;
2
nn

p p p

p

n
κσ

κσ
κσ

ξ ξ ξ ξ ξ ξ

λ
ξ ξ

p λ
 − 
 

= ∝ = =

 − 
 = = ⋅

k s k s

C

  

where k sn nn= +  is the total number of filters;   is the type-2 modified Bessel function; and 

1( )p ξ ξ=  is the prior probability that the outputs are dependent, which we obtained by training the 

MGSM on a database of natural images (see Supplementary Methods 3). The inferred probability that 

the inputs are independent ( )0 | ,p ξ ξ= k s has a similar expression (Coen-Cagli et al., PLoS Comput Biol 

8, e1002405, 2012), but involving the covariances ( )κC , ( )σC . 

When the posterior probability that the RF and surround filter outputs are dependent is large (i.e.

p ξ = ξ1 | k,s( )≈1for a homogeneous image), the estimate of the local component, ,θ ωκ , is proportional 
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to the ratio between the observed response of the RF filter ( ,kθ ω ) and the normalization signal computed 

from the responses of all other filters ( ( )κσλ , a generalized measure of center-surround energy), as shown 

in (Eq. S4). That is, the estimate involves divisive normalization from the surround. The generalized 

measure of center and surround contrast energy reduces to a classical description of normalization 

(Heeger, Vis Neurosci 9, 181-197, 1992) when the covariance matrix is diagonal (i.e. when the 

dependency between k and s is entirely explained by the shared mixer variable, with no linear correlations 

between their outputs). Critically, when the probability is small (i.e. p ξ = ξ1 | k,s( )≈ 0  for a 

heterogeneous image) the estimate does not involve surround normalization. Hence the prediction is that 

surround suppression is muted for heterogeneous images. 

 

Training the Bayesian model 

In addition to the properties of the center and surround filters, the Bayesian model (MGSM) uses several 

parameters that are learned from natural images—namely, the prior probability that the outputs are 

dependent ( )1p ξ ξ= , and the covariance matrices for the two mixture components ( )κσC , ( )κC , ( )σC . 

The values of these parameters determine whether a particular image will be classified as homogeneous 

or heterogeneous, according to (Eq. S6).  

For each set of filters, we trained the Bayesian model on image patches randomly selected from a 

database commonly used for image compression benchmarks 

(http://neuroscience.aecom.yu.edu/labs/schwartzlab/code/standard.zip). We computed the outputs of the 

visual filters to the patches, and searched for the parameter values that maximized the likelihood of the 

filters’ outputs, namely p k,s | parameters( ). To find the maximum likelihood parameters we used an 

iterative procedure based on the Expectation Maximization (EM) algorithm, as it is standard for mixture 

models (Coen-Cagli et al., Advances in NIPS 369–377, 2009; Meng and Rubin, Biometrika 80, 267-

278,1993). The training was unsupervised: we did not pre-specify which patches in the training set were 

homogeneous or heterogeneous, but rather let the model infer them. Once we had defined the optimal 

parameters with the standard database, we froze them before classifying the experimental images. 
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2. Image homogeneity and center-surround similarity  
We defined image homogeneity formally, as the result of inference in an MGSM model of natural images 

(Eq. S6). Intuitively, the inference reflects the statistical similarity of signals in the RF and surround. Here 

we specify this intuition further, in order to clarify how image homogeneity defines a measure of center-

surround similarity and what sort of structure in images leads to their being classified as homogeneous. 

We study the properties of the ratio between the probability that an image with filters outputs 

( , )k s (recall that k represents the outputs of a set of filters in the RF center with different orientations, 

and s a set of filters with fixed orientation and different positions in the surround, as explained in the 

Methods) is homogeneous vs. heterogeneous: 

(Eq. S7)

( )
( )

( )
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( ) ( )

1
2

( ) ( ) ( )

1 1

0 0

2 det 2 det

2 d

| ,
| ,

1 ;
2

1 ; 1

t

;
2 2

e

k s

k s

n n

n

n

n
k s

n

p p
M

p p

n

n n

κ σ

κσ

κσ
κ σ

κ σ κσ

p pξ ξ ξ ξ
ξ ξ ξ ξ p

λ λ λ

λ λ λ

   − −   
   

 − 
 

= =
⋅ ⋅

= =

 − 
 ⋅ ⋅

   − −   


=

  

C Ck s
k s C





 

 

We would like to understand which patterns of filters outputs lead to higher ratios, corresponding to 

higher inferred probability that the image is homogeneous.  

 

A heuristic approximation to the inference of homogeneity, for a simplified case 

We first consider the following special case, in which there are no correlations between filters 

(i.e., diagonal covariance matrices) and homogeneous and heterogeneous images are equally probable a 

priori. Specifically: 

( ) ( )
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( )
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from which it follows (by substitution in (Eq. S4) and (Eq. S5)) that: 
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This simplifies (Eq. S7) greatly, to: 

(Eq. S8) 
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We can now verify if the intuition is correct that when the drive to the RF and surround are similar, 

images are inferred homogeneous (i.e. M takes on large values). In this case k sP P P=  and therefore 

(Eq. S9) 
( )
( ) ( )

2 2 1 1
2 2

2 1; 2

2

1 1

1;
m

m P

m P P
M −

−
= ⋅ ⋅

−




 

When the inputs are weak, i.e. 0P → , we can use the known limiting form of the Bessel function for 

small arguments (Abramowitz and Stegun, Handbook of Mathematical Functions with Formulas, Graphs, 

and Mathematical Tables (1972), p.375): 

(Eq. S10) ( ) 1 2; ( )
2

n

n x n
x

 ≈ Γ  
 

  

and therefore 

(Eq. S11) 
7
2

2

(2 1) 12
( 1)

m
m

M
P

Γ −
≈ ⋅

Γ −
⋅  

thus showing that M diverges for weak and similar RF and surround drive. Similarly, for strong inputs 

that are similar in the RF and surround, i.e. 1P , we can take the first order asymptotic expansion of the 

Bessel function (Abramowitz and Stegun, Handbook of Mathematical Functions with Formulas, Graphs, 

and Mathematical Tables (1972), p.377), and find that: 

(Eq. S12) 2
2

1
2

P
m eM

p −≈ ⋅  

again showing that M diverges for large and similar center and surround energies. 
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We can also verify the intuition that when the energies in the center and surround are different, 

images are inferred heterogeneous (i.e. M takes on small values). We consider first the case that

s kP P , or equivalently 0,k sP P→ →∞ . Under this circumstance we find: 

(Eq. S13) 
( )

( ) ( )
( )
( )

1
2

2 1
2

2 1;

1; 1;

m

s k s
m

k s s

Pm P P
M

m P m P P

−

−

−
⋅

−

⋅

−
≈



 
 

and using the limiting form and asymptotic expansion of the Bessels, for 0,k sP P→ →∞

respectively, we find: 

(Eq. S14) 
( )
( )

1

2

m
k

m

s

M
P

P

−

≈  

This ratio vanishes as the numerator goes to zero and denominator to infinity, thus confirming that images 

with strong surround and weak center energy are inferred heterogeneous. A similar result holds for strong 

RF input paired with weak drive to the surround. 

The behavior for intermediate values of ,k sP P cannot be described as easily analytically. 

However, we can compute M exactly via (Eq. S8) for a range of values of ,k sP P commonly observed on 

natural images. In Supplementary Figure 4a we assumed 8m = (i.e. 16 filters, or 8 quadrature pairs, in 

the center and 16 in the surround), and plot the values of ( 1)M M + , which is identical to

( )1 | ,p ξ ξ= k s —the posterior probability that the image is homogeneous. As expected, the largest 

values are found closer to the diagonal, when ,k sP P are similar. This is true not only in the asymptotic 

regimes but also for intermediate energies. However, to achieve a high probability of inferred 

homogeneity, there is a more stringent requirement that ,k sP P are similar at low values of ,k sP P  than 

at high values. Thus, the requirement of similar drive to the center and surround has a strong intensity-

dependence. Another way to think about this result is in terms of the so called Bayesian Occam’s razor: 

when the evidence is weak (e.g. a low contrast image, corresponding to low values of ,k sP P ), stick to 

the simpler model (the center and surround signals are independent) rather than the more complex one 

(center and surround signals are dependent).  

We then searched for a simpler, intuitive similarity measure that could approximate the behavior 

of the full inference. We found that the measure 
( )
( )

k s

k sP
P P

S
P

α

β

⋅
=

+
, based on the rightmost term in (Eq. S8), 

did reasonably well: it increased both when the energies were more similar and when they were larger 
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(i.e. when the product dominates over the sum). Importantly, simpler measures, based on either the 

difference between kP  and sP , or their log-ratio, could not reproduce the characteristic intensity-

dependence of the full inference. Thus, simpler measures of similarity—such as those suggested by 

previous physiological studies—fail to capture the behavior of the inference of homogeneity. 

Supplementary Figure 4b illustrates the probability corresponding to the measure S (namely ( 1)S S + , 

which is analogous to ( 1)M M +  plotted in Supplementary Figure 4a). We searched manually for 

values of the exponents in S, and found that the qualitative behavior of ( )1 | ,p ξ ξ= k s  could be 

approximated reasonably well for a large range of values, provided that 1.7β α≈ . 

In summary, this analysis confirms the intuition that MGSM inference about homogeneity defines 

a measure of center-surround similarity. Such similarity is input strength-dependent, and can be 

approximated as a product-over-sum ratio with different exponents.  

 

Inference with realistic covariance structure 

So far we have considered the case where the covariances are identity matrices. However, in the MGSM 

the covariances are optimized to capture structure in natural images, and in practice they are far from 

diagonal (Coen-Cagli et al. PLoS Comput Biol 8, e1002405 (2012)). How do non-diagonal covariances 

affect the inference? As shown in (Eq. S4) and (Eq. S5), the entries of the inverse covariances act as 

weights in the sum of filter energy terms, therefore determining the values of ( ) ( ) ( ), ,κ σ κσλ λ λ .  As shown 

in (Eq. S7), the values of these λ  terms directly influence the inference of homogeneity: when ( )κσλ is 

small and the product of ( ) ( ),κ σλ λ  is large, the image is more likely to be homogeneous; and conversely 

when ( )κσλ is large and the product of ( ) ( ),κ σλ λ is small. 

To gain some intuition, consider ( )κσλ . Its value is small when the term ( ) ( )( ), ,κσk s C k s 
is 

large (and therefore ( ) ( )1
( ), ,κσ
−k s C k s 

is small). The term ( ) ( )( ), ,κσk s C k s 
  is large when ( ),k s  is a 

pattern that matches structure in the covariance. For instance, for natural images the variance and 

covariance of surround filters collinear with the RF  (i.e. similarly oriented, and placed at the ends of the 

RF) are much larger than those of other surround filters (e.g. similarly oriented, but placed at the sides of 

the RF; Coen-Cagli et al. PLoS Comput Biol 8, e1002405 (2012)), due to the predominance of long lines 

and edges in scenes. Therefore, the image of a long stripe passing through the RF and collinear surround 

filters will produce a large value of ( ) ( )( ), ,κσk s C k s 
, and therefore a small value of ( )κσλ , leading to a 

higher probability of inferred homogeneity. An image containing similarly oriented structure in the RF 
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but no collinearity, will lead to a smaller value of ( ) ( )( ), ,κσk s C k s 
, and therefore a lower probability 

of inferred homogeneity.  

More precisely, let us consider the eigen-decomposition of the covariance ( )( ) i
i

i ihκσ = ⋅∑ vC v

and its inverse ( ) 111
( ) i i i

i
hκσ

−−− = ⋅∑ vC v , where ,i ihv  are the orthonormal eigenvectors of the 

covariance and corresponding eigenvalues, respectively. If the input pattern ( ),k s  is an eigenvector iv

with large eigenvalue ih  (i.e., it matches the dominant structure in the covariance), then ( )κσλ amounts 

to 1 ih , a small number. This leads to a higher probability of inferred homogeneity. Conversely, if the 

input pattern ( ),k s  is an eigenvector with small eigenvalue, then ( )κσλ is large, leading to a lower 

probability of inferred homogeneity. 

In summary, visual inputs that resemble the dominant structure (the largest eigenvectors) in ( )κσC , 

and therefore differ from the dominant structure in ( ) ( ),κ σC C , are assigned high probability of being 

homogeneous. Therefore the full inference about homogeneity in the MGSM amounts to a generalized 

measure of center-surround similarity, which is dependent on the overall oriented energy in the image, 

and which uses a metric defined by the structure of the covariance matrices learned from natural images. 
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