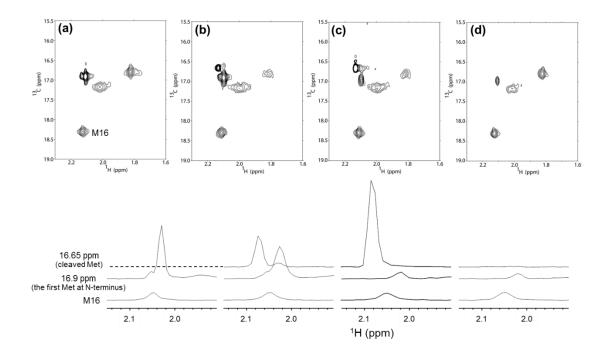

## **Supplementary Information**

## NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities


Ratsupa Thammaporn<sup>1,2</sup>, Maho Yagi-Utsumi<sup>2,3</sup>, Takumi Yamaguchi<sup>2,3</sup>, Pornthip Boonsri<sup>4</sup>, Patchreenart Saparpakorn<sup>1,5</sup>, Kiattawee Choowongkomon<sup>6</sup>, Supanna Techasakul<sup>1</sup>, Koichi Kato<sup>2,3\*</sup>, and Supa Hannongbua<sup>1,5</sup>\*

<sup>1</sup>Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok Thailand <sup>2</sup>Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Japan <sup>3</sup>Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan <sup>4</sup>Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok Thailand <sup>5</sup>Center of Nanotechnology, Kasetsart University, Chatuchak, Bangkok Thailand <sup>6</sup>Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok Thailand

\*Corresponding author: fscisph@ku.ac.th and kkato@phar.nagoya-cu.ac.jp



**Supplementary Fig. S1.** <sup>1</sup>H-<sup>13</sup>C HSQC spectra of the [methyl-<sup>13</sup>C]methionine-labeled p66 mutants of HIV-1 RT: (a) M16L, (b) M184L (c) M357L (d) M41L, (e) M164L, and (f) M230L. The resonance originating from the N-terminal extra methionine is marked with an asterisk.



**Supplementary Fig. S2.** <sup>1</sup>H-<sup>13</sup>C HSQC spectra of HIV-1 RT before (a) and after incubation in the presence of methionine aminopeptidase (Clontech) at 70:1 unit of HIV-1 RT: aminopeptidase at 37°C for 1.5 h (b) and 12 h (c). (d) The <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of the same sample after removing the cleaved methionine using a PD-10 desalting column (GE Healthcare). 1D slices across the  $\omega_1$  dimension of HSQC spectra at 16.9 ppm (corresponding to the N-terminal first methionine) and at 16.65 ppm (corresponding to liberated methionine) were normalized by the intensity of the peak of M16.