
S1 Text

Distribution of diffusion coefficients
The canonical physical model, underlying mean square displacement (MSD) analysis, for protein

motion is that the protein undergoes diffusion as a result of its isotropic Brownian motion, which is
described theoretically by Einstein’s equation [67]:
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)i = 4Dm�t , (Eq. S1)

where D is the diffusion coefficient, and m is an integer value corresponding to the number of lag time
increments, �t.

Although Eq. S1 describes the ensemble behavior of the diffusing protein, the ergodic property
for normal diffusion specifies that the ensemble-averaged behavior is equivalent to the time-averaged
behavior of the diffusing protein in the limit that the protein track length is infinite [68]. To calculate the
time-averaged MSD (taMSD), it is common to augment the number of samples by drawing overlapping
displacements from within a given protein trajectory. For a stationary sequence of T two-dimensional
(2D) protein positions, r = {x

t

, y

t

} for t = 1 through T , each separated one from the next by a time, �t,
the overlapping taMSD is calculated according to [26,28]:
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, T ) is the taMSD for the mth time lag, �
m

= m�t and the bar on top of �(�
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, T ) is used
to distinguish the time average.

In analyzing individual protein trajectories via time-averages, we make the underlying assumption that
the governing motion is ergodic. Hence, the time-averaged motions are representative of the ensemble
behavior. However, due to the stochastic nature of diffusion, the equivalence only holds in the limit of an
infinitely-long protein track [69]. Thus, when the ergodicity condition is satisfied, there is no variability
in the diffusion coefficients estimates between protein trajectories. Experimental protein trajectories,
however, have finite length. As a consequence, the ergodicity condition cannot be satisfied, ultimately
resulting in a scatter of the taMSD about the ensemble-averaged MSD [68]. By plotting the taMSD
calculated from synthetic protein trajectories without localization noise, we illustrate that the level of
scatter increases with decreasing trajectory length (see S13 Fig.). As expected for normal diffusion, the
average over all taMSD curves recovers ergodicity [68], i.e. h�(�

m

, T )i = h⇢(�
m

)i, regardless of the length
of the protein trajectories.

The progressively increasing scatter of the taMSD for higher time lags renders the determination of
the underling diffusion mode difficult, especially for short protein trajectories. For instance, the shape of
the taMSD curves for 15 steps and 30 steps exhibit significant deviations from a linear behavior, which
may be mistaken for confined, driven, or anomalous diffusion. Thus, applying an unweighted least squares
fit for each of these diffusion models inevitably results in artifacts. The reduced statistics from shorter
protein trajectories renders the taMSD unreliable for classification for macroscopic diffusion modes. Thus,
it is common to focus on the short-time diffusive behaviors, which models diffusion at timescales prior to
interactions with the environment which may cause deviations from a linear behavior in the taMSD. For
brevity, we drop the short-time prefix in the remainder of this Text.

S13 Fig. also displays the probability distributions of the diffusivity estimates for various track lengths
calculated using only the first time lag of the taMSD, which is optimal for protein trajectories without
localization noise [70]. When the protein trajectories are long, the distribution of diffusivities is narrow
and the mode of the distribution is centered near the ensemble diffusion coefficient. That is to say, there is
minimal variability in the diffusivity estimates between protein trajectories. As the protein track lengths
become shorter, however, ergodicity is further broken, resulting in a broadening of the distribution and an



S13 Fig. Ergodicity breaking due to limited statistics. (a-d) Representative plot of 100 taMSD
traces for the first 12 time lags from synthetic protein trajectories without localization noise with D = 0.3
µm2s�1 and a track length of (a) 15, (b) 50, (c) 100, and (d) 500 steps. (e) Shows the probability
distribution of the diffusivities estimated from the first time lags of the taMSD. Each distribution was
generated by analyzing 2,000 ”noiseless” synthetic protein trajectories with D = 0.3 µm2s�1 for various
track lengths (shown in a different color). The probability distributions in (e) were generated by building
a histogram of the diffusivity estimates and normalizing each bin with the total number of protein
trajectories.
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increased positive skew, so that the mode is further suppressed from the mean. The mean over the entire
distribution, however, remains an unbiased estimate of the ensemble diffusion coefficient, irrespective of
the protein track lengths.

Localization noise serves to obscure the exact positions of the diffusing protein. Thus, analysis of
synthetic protein trajectories with localization noise inevitably results in a lower accuracy, compared
to the analysis of similar synthetic protein trajectories without localization noise. Here, at least two
MSD time lags are required to determine the two unknowns, namely the diffusion coefficient and the
static localization noise. Even when the static localization noise is known, using only the first time
lag of the MSD is not optimal because of the correlations in the nearest-neighbor displacements, that
result from localization noise. However, a nearly optimal estimation of the diffusion coefficient and static
localization noise for individual protein trajectories undergoing normal diffusion can be achieved with the
covariance-based estimator (CVE) of Ref. [49].

We explore the impact of localization noise on the CVE-generated distribution of diffusivities by
simulating protein trajectories with various levels of localization noise while maintaining a constant
diffusion coefficient and track length of Dsim = 0.3 µm2s�1 and N

sim = 15, respectively. S14 Fig.
illustrates that the distribution of diffusivities broadens as the level of static localization noise increases.
Nonetheless, the mean over the entire distribution, including any negative diffusivity estimates, continues
to yield an unbiased estimate of the diffusion coefficient, irrespective of the value of the localization noise.

In general, the diffusion coefficient distributions are well-defined, in the sense that analyzing additional
protein trajectories with the same properties, namely D

sim, Nsim, and �

sim, does not produce more
accurate estimates, i.e. the shape of the distributions remain unchanged as additional tracks are included.
This feature of the probability distributions clearly implies that each diffusivity estimate is not variable
as a result of experimental measurement errors, but rather the variation arises from noise inherent to
the process under study in accordance with the Cramer-Rao lower bound [35]. Thus, as a consequence
of ergodicity breaking, the diffusivity estimates can be understood as a random variable drawn from a



S14 Fig. Effect of localization noise on diffusivity distributions. The probability distribution
of the diffusivities by applying CVE analysis on 2,000 ”noisy” synthetic protein trajectories with D = 0.3
µm2s�1 and a track length N = 15, for four values of the static localization noise, each shown in a
different color. The probability distributions were generated by building a histogram of the diffusivity
estimates and normalizing each bin with the total number of protein trajectories.
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well-defined distribution [71], whose shape depends on the underlying diffusivity, mean protein track
length, and static localization noise. Because the underlying diffusivity is an intrinsic property of the
protein/cell system, improving the accuracy of diffusion coefficient estimates can only be achieved by
analyzing longer protein trajectories and/or by reducing the level of localization noise.


