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Derivation of likelihood framework for diffusive states
The likelihood of observing an individual protein trajectory with N one-dimensional (1D) displacements,
Ax = {Az(n)}]_,, separated by At, in a diffusive state with a covariance matrix, X, is given by a
multivariate Gaussian distribution: [34]
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where AxT is the transpose, || is the determinant, and £~ is the inverse. Explicitly, the covariance
matrix for a protein undergoing normal diffusion is given by: [34]
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where D is the diffusion coefficient, o is the static localization noise, and R is the motion blur coefficient [19],
which depends on the shutter state during the camera integration time. For a shutter that is open
throughout At, as we assume in this paper, R = %

Thus the complete likelihood of observing M protein trajectories, AX = {Ax,,}M_, in this same
diffusive state is given by the product of the individual protein trajectory likelihoods, according to
P(AxX|X) = H%Zl P(Ax,,|X). However, this assumes that all of the protein trajectories are homogeneous,
sharing the same covariance matrix.

We can extend the likelihood of individual protein trajectories to include multiple diffusive states with
a Gaussian mixture model [36]. When there are K diffusive states each characterized by a different X,
the formulation for the complete likelihood for the a population of protein trajectories is simplified by
introducing a hidden variable, z, which corresponds to an indicator of the underlying diffusive state. z is a
K-dimensional binary random variable which has one element equal to 1 corresponding to the underlying
diffusive state and the other elements are equal to 0, z = {2, (k)}5_,.

In this representation, the likelihood distribution of the mth protein trajectory can be given by
marginalizing the joint distribution, P(AX,,, zm\ﬁ), over the hidden variable, z, according to:
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where 3 = {Ek}szl.

For protein trajectory m, we define the probability of a particular diffusive state is given by P(z,,(k) =
1) = 7y, which we call the population fraction with properties 0 < 7, < 1 and normalization Zszl T = 1.
Thus, the probability over the hidden variables across all states given the P(zm|ﬁ]), can be expressed in
the form:

K
P(2|5) = P(an) = [] m ™. (Eq. S3)
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Since the likelihood of Ax,, given a particular value for z,, is the same as the likelihood for an
individual protein trajectory, i.e. P(AXp,|2zm (k) =1,%) = P(Ax,,|31), the full conditional probability
can then be written in the form:

K
P(Axp|zm, ) = [] [P(Ax[Z0)) ") (Eq. S4)
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Substituting Eq. S3 and Eq. S4 into Eq. S2, the marginal distribution of Ax,, becomes:
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Thus, the marginal distribution of Ax,, is a mixture of K multivariate Gaussians of individual protein
trajectory likelihoods for each diffusive state. For M protein trajectories, the complete likelihood is given
with a product of these Gaussian mixtures for each protein trajectory:

) M K
LAx7, X)) = [ D mP(Axn, ).
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where 7t = {m, }X_,. Equivalently, the complete log-likelihood function:
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Derivation of D, and oy,

To find the maximization relations for Dy and oy, we first maximize the log-likelihood (Eq. 1) with

respect to ¥y, according to aalgﬁ =0.
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theorem, given by:

where Y =

and M = 2%21 Ymk- Interestingly, v.,i follows directly from Bayes’
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To determine the maximized forms of Dy, from 3, we equate the maximized covariance matrix (Eq. S5)
with the theoretical covariance matrix (Eq. 3) in a manner similar to the covariance-based estimator [49].
It is useful to equate the diagonal elements and the first off-diagonal elements separately. Equating the
diagonal elements of the theoretical covariance matrix, which is equal to 2D, At + 207 — 4RDy A, to the
mean diagonal elements of the maximized Xy, yields:
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where (A, (n)?) = = SN Az, (n)? represents the mean of the N, displacements square for protein

trajectory m, and Ax,, = {Az,,(n)}\m .
Similarly, equating the nearest-neighbor covariance of the theoretical covariance matrix, which is

equal to —O']% — 2R Dy At, to the mean nearest-neighbor covariance of the maximized covariance matrix,

corr (2], .1y, yields:
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where (Azy,(n)Az,(n+1)) = _1 Z ! Az (n) Az, (n+1) is the mean correlation between nearest

neighbor displacements for protem traJectory m.



Using the relations for the diagonal terms (Eq. S6) and off-diagonal terms (Eq. S7), the maximized
diffusivity estimates for diffusive state k can be solved according to:
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Analogously, the maximized static localization noise estimates for diffusive state k can be solved by
substituting Eq. S8 into Eq. S6, and solving for o7 according to:
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where the square root of o% gives the static localization noise.

The covariance-based maximization equations for Dy and o represent the posterior-weighted average
of the covariance-based estimators for each diffusive state across the population of protein trajectories. It
should be noted that the covariance-based estimator was shown to be nearly optimal and unbiased when
analyzing protein trajectories on an track-by-track basis [49].

Derivation of

To find 7, we maximize the log-likelihood (Eq. 1) with respect to m subject to the constraint that
Zszl 7, = 1, which we implemented via a Lagrange multiplier, A.
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Substituting A back in to the maximized equation and solving for 7y, we find:
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