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Derivation of likelihood framework for diffusive states
The likelihood of observing an individual protein trajectory with N one-dimensional (1D) displacements,

�x = {�x(n)}N
n=1, separated by �t, in a diffusive state with a covariance matrix, ⌃, is given by a

multivariate Gaussian distribution: [34]
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where �xT is the transpose, |⌃| is the determinant, and ⌃�1 is the inverse. Explicitly, the covariance
matrix for a protein undergoing normal diffusion is given by: [34]
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whereD is the diffusion coefficient, � is the static localization noise, and R is the motion blur coefficient [19],
which depends on the shutter state during the camera integration time. For a shutter that is open
throughout �t, as we assume in this paper, R = 1

6 .
Thus the complete likelihood of observing M protein trajectories, �x̂ = {�x

m

}M
m=1, in this same

diffusive state is given by the product of the individual protein trajectory likelihoods, according to
P (�x̂|⌃) =

Q
M

m=1 P (�x
m

|⌃). However, this assumes that all of the protein trajectories are homogeneous,
sharing the same covariance matrix.

We can extend the likelihood of individual protein trajectories to include multiple diffusive states with
a Gaussian mixture model [36]. When there are K diffusive states each characterized by a different ⌃

k

,
the formulation for the complete likelihood for the a population of protein trajectories is simplified by
introducing a hidden variable, z, which corresponds to an indicator of the underlying diffusive state. z is a
K-dimensional binary random variable which has one element equal to 1 corresponding to the underlying
diffusive state and the other elements are equal to 0, z = {z

m

(k)}K
k=1.

In this representation, the likelihood distribution of the mth protein trajectory can be given by
marginalizing the joint distribution, P (�x

m

, z
m

|⌃̂), over the hidden variable, z, according to:
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where ⌃̂ = {⌃
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}K
k=1.

For protein trajectory m, we define the probability of a particular diffusive state is given by P (z
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Thus, the probability over the hidden variables across all states given the P (z
m

|⌃̂), can be expressed in
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Since the likelihood of �x
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given a particular value for z
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is the same as the likelihood for an
individual protein trajectory, i.e. P (�x
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can then be written in the form:
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Substituting Eq. S3 and Eq. S4 into Eq. S2, the marginal distribution of �x
m

becomes:
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Thus, the marginal distribution of �x
m

is a mixture of K multivariate Gaussians of individual protein
trajectory likelihoods for each diffusive state. For M protein trajectories, the complete likelihood is given
with a product of these Gaussian mixtures for each protein trajectory:
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Derivation of Dk and �k

To find the maximization relations for D
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, we first maximize the log-likelihood (Eq. 1) with
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where �
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To determine the maximized forms of D
k

from ⌃
k

, we equate the maximized covariance matrix (Eq. S5)
with the theoretical covariance matrix (Eq. 3) in a manner similar to the covariance-based estimator [49].
It is useful to equate the diagonal elements and the first off-diagonal elements separately. Equating the
diagonal elements of the theoretical covariance matrix, which is equal to 2D
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Similarly, equating the nearest-neighbor covariance of the theoretical covariance matrix, which is
equal to ��
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(n+1) is the mean correlation between nearest
neighbor displacements for protein trajectory m.



Using the relations for the diagonal terms (Eq. S6) and off-diagonal terms (Eq. S7), the maximized
diffusivity estimates for diffusive state k can be solved according to:
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Analogously, the maximized static localization noise estimates for diffusive state k can be solved by
substituting Eq. S8 into Eq. S6, and solving for �2
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according to:
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where the square root of �2
k

gives the static localization noise.
The covariance-based maximization equations for D

k

and �

k

represent the posterior-weighted average
of the covariance-based estimators for each diffusive state across the population of protein trajectories. It
should be noted that the covariance-based estimator was shown to be nearly optimal and unbiased when
analyzing protein trajectories on an track-by-track basis [49].
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Substituting � back in to the maximized equation and solving for ⇡
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