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Supplemental Materials table s1 (Not to be Published)

Young's Poisson’s ratio Permeability Solid content
modulus (MPa) (m*N's™
Cartilage 0.5417 0.0833 4x107" 0.2

Indenter 5417 0.125 4 x 1072 0.95
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Electronic Supplementary Material

A:. MATLAB code for time-delay estimation from pre- and post-compression

ultrasonic signals

clc
clear all

close all

window lower=8.0e-6

window upper=10.0e-6

o)

A =xlsread('pre.csv'); % pre-compression signal
TimeA=A (3:size(A,1)-1,1);

VoltA=A(3:size(A,1)-1,2);

figure (1)

plot (TimeA,VoltA, 'b")

hold on

B =xlsread('post.csv'); % post-compression signal
TimeB=B(3:size(B,1)-1,1);

VoltB=B(3:size(B,1)-1,2);

plot (TimeB,VoltB, 'r'")

VoltA (isnan (VoltA)) = 0;

VoltB (isnan (VoltB))

0;
if (TimeA(2)-TimeA (1)) <= (TimeB(2)-TimeB (1)),

VoltA = interpl (TimeA,VoltA,TimeB, 'cubic'); % interp A
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TimeB;

TimeA

else

VoltB

interpl (TimeB,VoltB, TimeA, "cubic'); % interp B
TimeB = TimeA;

end

indl=find(TimeA<window_ lower);

ind2=find(TimeA<window upper) ;

VoltAl = VoltA(size (indl) :size (ind2)) ;

TimeAl = TimeA(size (indl) :size (ind2)) ;

[val loc] = max(VoltAl(:));

t ref = TimeA (loc+size(indl,1)-1) % peak of uncompressed signal
VoltB(l:size(indl)-10) = 0;

VoltB(size (ind2)+10:end) = 0;

VoltB (isnan (VoltB)) = 0;

figure (2)

plot (TimeAl,VoltAl, 'b',TimeB,VoltB, 'r")

X1l=normxcorr2 (VoltAl,VoltB); S%compute cross-correlation between vectors
X1l=interp (X1,100); % upsampling

[m,d]=max (X1); %find wvalue and index of maximum value of cross-correlation
amplitude

dAns = d/100+1-(length (VoltAl)-1);

tShift = (size(indl,1l) - dAns) * ( TimeA(2)-TimeA(l) )

figure (3)

plot (TimeAl-tShift,VoltAl, 'b',TimeB,VoltB, 'r'")
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B: Finite element analysis.

The finite element model of the three-layered hydrogel construct was verified by
comparison with an indentation stress-relaxation model that was developed by Spilker
et al.® In their study, the porous indenter was modeled as a free draining boundary, and
the contact between the indenter and the cartilage was not explicitly modeled, but rather
compression was applied on the cartilage surface at the indenter site. Later, Guo and
Spilker used an augmented Lagrange method to model 2D axisymmetric contact of
biphasic cartilage.> The algorithm for contact constraints used in the current study
differs from that used by Guo and Spilker.? A penalty method available in COMSOL
Multiphysics (Comsol, Burlington, MA) was used to investigate the frictionless contact
mechanics with a poroelastic material. This method can provide faster and smoother
convergence but less accuracy of the contact pressure when compared to the

augmented Lagrange method. The contact pressure T, is defined as:’

t,—p,-g g<0

T = S1
5 to-exp(—%-gj g>0 1)

0
where ty is an input estimate of the contact pressure, g is the gap distance between the
source and destination boundaries, and p, is the normal penalty factor. In this model for
verification, an initial contact pressure is automatically chosen as t, = 1.9 x 10° Pa by

the solver. The default COMSOL expression for p,, is

p, = h£-min(5" 1072 1) (S2)

min
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where E is the Young’s modulus of the destination boundary, A, is the minimum mesh
size on the destination boundary, and k is the number of iterations in the segregated
solver used for analyzing the contact pressure and friction force independently.

An indentation test with a porous indenter was modeled as an axisymmetric problem
using the Biot poroelasticity and Darcy’s Law to verify the implementation in COMSOL
4.4. In the indentation example of Spilker et al.® a layer of cartilage of thickness h = 0.75
mm and radius Rp = 3 mm was indented by a porous flat-ended cylindrical indenter of
height hi,g = 0.75 mm and radius Rj,x= 0.75 mm.? The ratio of the radii of the cartilage
(Ry) to the indenter (Riq) was set at four based on previous results.® Cartilage was
idealized as a biphasic layer bonded to an impermeable rigid subchondral bone. Spilker
et al. demonstrated that the inclusion of a deformable subchondral bone layer had an
inappreciable effect on the predicted response of the cartilage layer.® Therefore, an
impermeable fixed boundary condition was imposed along the cartilage-bone interface
(at z = 0) instead of explicitly modeling the subchondral bone. A compressive
displacement of 0.075 mm, applied on the top of indenter, was increased linearly over
500 s and then held constant. Free-draining boundaries were applied on the top of the
indenter (at z = h + h;,g) and on the cartilage periphery (at r = Rp) as well as the surface
which was not in contact with the indenter (at z = h and r > Rj,4). Material properties of
the cartilage were the same as used in Guo and Spilker (Table $1).? A contact pair and
an identity pair were implemented between the bottom of the indenter and the top of the
cartilage. Each pair was composed of a source boundary and a destination boundary. In

this case, the bottom of the indenter was defined as the source boundary and the top of
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the cartilage was defined as the destination boundary. To improve convergence in the
contact model, the mesh on the destination side was finer than that on the source side.

Results of our contact solutions (Figure S1 (a)-(c)) are in good agreement with those of
Spilker et al.® Near the surface (z/h = 0.98) the axial stress and strain (Figure S1 (a)
and (b)) drop severely as r/Ri,q increases, but then quickly rise to zero at the edge of
the indenter, /Ri,s = 1. In the mid and deeper regions (z/h = 0.4 and z/h = 0.08) axial
stress and strain vary smoothly with increasing r/Rinqe. Fluid pressure is maximum at the
center of the model (Figure S1 (c)) varies smoothly from the surface and increases with
increasing depth. Next, the penalty method for contact constraints used in current study
is compared to the augmented Lagrange method used by Guo and Spilker.?
Distributions of the fluid pressure and axial stress at 250 s (Figure S2 (A) and (B))
show qualitative agreement with results of this indentation problem based on the
augmented Lagrange method. The pressure distribution is observed to be trivial beyond
a radial distance twice the radius of indenter. There is a noticeable difference in axial

stress occurring at the edge of the indenter.
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Figure Legends

Figure S1 (a): Comparison of the axial stress predicted using the 2D biphasic contact
finite element model to that predicted by the 2D biphasic non-contact finite element
model of Spilker et al.®> Results are presented at the ramp time of 500 s as used by

Spilker et al.®

Figure S1 (b): Comparison of the axial strain predicted using the 2D biphasic contact
finite element model to that predicted by the 2D biphasic non-contact finite element
model of Spilker et al.®> Results are presented at the ramp time of 500 s as used by

Spilker et al.®

Figure S1 (c): Comparison of the fluid pressure predicted using the 2D biphasic contact
finite element model to that predicted by the 2D biphasic non-contact finite element
model of Spilker et al.> Results are presented at the ramp time of 500s as used by

Spilker et al.®

Figure S2: (a) Distributions of the fluid pressure; red arrows indicate fluid velocity. (b)

Distribution of axial stress. Both at t = 250s, as used by Spilker et al.’

Table Legends

Table S1: Material properties for the cartilage and the porous indenter® where the value
of Young’s modulus was also computed from the aggregate modulus and Poisson’s

ratio found in Spilker et al.?
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