1 Supporting Information Legend

3	Supplemental Table 1. Minimum Inhibitory Concentrations (MIC ₉₀) for the antibiotics and iron
4	chelators used in this study. The concentrations reported were the concentrations used in the
5	assays of this report. All concentrations are in μ g/ml except DIP that is in μ M. Antibiotics used:
6	ampicillin (AMP), cefotaxime (CTX), chloramphenicol (CHL), ciprofloxacin (CIP), daptomycin
7	(DAP), gentamicin (GEN), levofloxacin (LVX), meropenem (MEM) methicillin (MET),
8	spectinomycin (SPT), trimethoprim (TMP), vancomycin (VAN), deferiprone (DFP),
9	deferoxamine (DFX), and 2 2' dipyridyl (DIP). Data represent mean and standard deviation of at
10	least six independent replicates.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

	E. coli ExPEC CP9	S. aureus TCH1516
AMP	5	2000
СТХ	0.125	N/A
CHL	1000	10
CIP	0.0625	N/A
DAP	N/A	50
GEN	12.5	N/A
LVX	0.1	0.5
MET	2500	40
MEM	0.04	N/A
SPT	50	250
TMP	1	N/A
VAN	1000	10
DFP	300	>1200
DFX	>4000	>2400
DIP	500	>2500

28 **Supplemental Table 2.** Classification and summary of the ferricidal effect of antibiotics tested

in the study. "Y"=yes, the terminal OD_{600} ($OD_{600-18h} - OD_{600-0h}$) for the antibiotic+chelator

30 treatment was lower than each compound separated; "N" = no growth; "N/A" = not applicable.

			Growth	Growth	Growth	Growth
	Class		Inhibition	Inhibition	Inhibition	Inhibition
Name		Mechanism	(+DFP)	(+DFX)	(+DIP)	(+DFP)
			E. coli	E. coli	E. coli	S. aureus
AMP	β-lactam	inhibits cell wall synthesis	Y	N	Y	Y
СТХ	β-lactam	inhibits cell wall synthesis	Y	N	Y	N/A
CHL	chloramphenicol	inhibits 50S ribosomal subunit	Y	Y	Y	Ν
CIP	fluoroquinolone	inhibits DNA gyrase	Ν	Ν	Ν	N/A
DAP	lipopeptide	disrupts membrane integrity	N/A	N/A	N/A	N
GEN	aminoglycoside	inhibits 30S ribosomal subunit	Ν	N	N	N/A
LVX	fluoroquinolone	inhibits type II topoisomerases	N	N	N	Y
MET	β-lactam	inhibits cell wall synthesis	Y	N	N	N/A
MEM	β-lactam	inhibits cell wall synthesis	Ν	Ν	Ν	Ν

	SPT	aminocyclitol	inhibits 30S ribosomal subunit	N	N	N	Ν
	TMP	dihydrofolate reductase inhibitor	inhibits DNA synthesis	N	N	N	N/A
	VAN	glycopeptide	inhibits peptidoglycan synthesis	Y	N	Y	N
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							

Supplementary Table 3. The known or published properties of three iron chelators (deferiprone,

45 2 2' dipyridyl, and deferoxamine). Listed are the antibiotics that demonstrate enhanced

46 antibacterial activity when combined with the chelator, their ability to cross a membrane bilayer,

47 molecular weight, and published affinity for iron.

Name	Abbreviation	Antibacterial activity with:	Ability to enter cells	Size (g/mol)	Affinity for iron	Reference
Deferiprone	DFP	AMP CHL CTX MET VAN	high	139.15	1×10 ¹⁹ M ⁻¹ (Fe ³⁺)	(1, 2)
2 2' Dipyridyl	DIP	AMP CHL CTX VAN	high	156.18	$\begin{array}{c} 1 \times 10^{16} \ \mathrm{M^{-1}} \\ (\mathrm{Fe^{3+}}) \\ 1 \times 10^{17} \ \mathrm{M^{-1}} \\ (\mathrm{Fe^{2+}}) \end{array}$	(3, 4)
Deferoxamine	DFX	CHL	low	560.68	$1 \times 10^{30} \mathrm{M}^{-1}$ (Fe ³⁺)	(1, 5)

53	Supplemental Figure 1. Iron chelators and antibiotics restrict the growth of <i>S. aureus</i> . <i>S. aureus</i>
54	TCH1516 was cultured in BHI in the presence or absence of antibiotic, DFP (900 μ g/ml), or both
55	for 18 hrs. and the terminal OD_{600} ($OD_{600-18h} - OD_{600-0h}$) was measured as described in the
56	Experimental Procedures. (A) AMP (500 µg/ml), (B) LVX (0.1 µg/ml), (C) CHL (2.5 µg/ml), (D)
57	DAP (10 μ g/ml), (E) MET (10 μ g/ml), (F) SPT (50 μ g/ml), (G) VAN (1 μ g/ml). Data represent
58	the mean and standard deviation of at least six separate replicates. The p value was determined
59	by a Student's t-test. The black box indicates the antibiotics that showed enhanced bacterial
60	growth inhibition when combined with DFP.
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	

Supplemental Figure 2. Time-kill assays for the antibiotics and DFP that demonstrate an 75 76 enhanced efficacy towards S. aureus. Bacteria were cultured in 5 mL BHI overnight at 37 °C with vigorous shaking and then subcultured into 5 mL of Cation-Adjusted Mueller-Hinton Broth 77 (CAMHB) at a starting OD600 = 0.01, supplemented with antibiotics: (A) AMP (500 μ g/ml), (B) 78 79 LVX (0.1 µg/ml), DFP (900 µg/ml), antibiotic with DFP, or not supplemented at all. CFUs of each culture were determined by 10 fold serial dilutions and drip-plating of 20 µL of each diluent 80 at the times indicated. Data represent the mean and standard deviation of three independent 81 82 experiments.

Supplemental Figure 3. The effect of vancomycin and DFP on the growth of clinical E. coli 85 isolates. All growth assays were performed in 96 well plates in 200 µl of BHI at a starting 86 OD₆₀₀=0.01. Antibiotics and chelators were added to the well when appropriate at the following 87 concentrations: ELZ4013: 100 µg/ml VAN, 125 µg/ml DFP; ELZ4045: 250 µg/ml VAN, 300 88 µg/ml DFP; ELZ4046: 500 µg/ml VAN, 300 µg/ml DFP; ELZ4234: 400 µg/ml VAN, 300 µg/ml 89 DFP; ELZ4251: 2 mg/ml VAN, 125 µg/ml DFP; and ELZ4486: 500 µg/ml VAN, 300 µg/ml 90 91 DFP. Bacterial growth was quantified by determining the difference in the optical density between the start and end of the experiment, represented as $OD_{600-18h} - OD_{600-0h}$. Data represent 92 the mean and standard deviation of three independent experiments. 93 94

Supplemental Figure 4. The effect of antibiotic and DFP on membrane permeability. *E. coli*CP9 was cultured in the presence and absence of antibiotics (VAN-250 µg/ml, CTX-62.5 ng/ml),
100 150 µg/ml DFP, or both. Fluorescence, which positively correlated with membrane permeability,
were measured at the indicated times. Data were expressed as fluorescence per cell and represent
the mean and standard deviation of three independent experiments.

Supplemental Figure 5. The effect of detergents and DFP on the growth of ExPEC. *E. coli* strain CP9 was cultured in the presence and absence of detergents (A - Tween20 and B - Triton-100, both at 20%), DFP (150 μ g/ml), or both detergent and DFP and growth (OD₆₀₀) were measured for 18 hrs. The data represent the mean and standard deviation of three independent experiments.

- 111
- 112
- 113

114	References:
-----	-------------

115	1.	De Domenico I, Ward DM, Kaplan J. 2009. Specific iron chelators determine the
116		route of ferritin degradation. Blood 114 :4546–4551.

- 117 2. Paauw A, Leverstein-van Hall MA, van Kessel KPM, Verhoef J, Fluit AC. 2009.
- 118 Yersiniabactin reduces the respiratory oxidative stress response of innate immune
- cells. PLoS One **4**. doi: 10.1371/journal.pone.0008240.
- 3. **Petrat F, de Groot H, Rauen U**. 2000. Determination of the chelatable iron pool
- of single intact cells by laser scanning microscopy. Arch. Biochem. Biophys.

122 **376**:74–81.

- 4. Schatten H. 2007. Cation transport, p. 296–297. In Schatten, H, Eisenstark, A
- (eds.), Salmonella: methods and protocols. Springer Science & Business Media.
- 125 5. Hallaway PE, Eaton JW, Panter SS, Hedlund BE. 1989. Modulation of
- deferoxamine toxicity and clearance by covalent attachment to biocompatible
- 127 polymers. Proc. Natl. Acad. Sci. U. S. A. **86**:10108–10112.