SUPPLEMENTARY FIGURES AND TABLE

Supplementary Figure S1: Levels of miR-27b but not miR-24 are down-regulated in stomach adenocarcinoma samples. A. As described in the legend to Figure 1, level 3 data of miR-27b (*left*) and miR-24 (*right*) expressions from stomach adenocarcinoma samples (n = 372) and normal tissue samples (n = 39) were downloaded from the TCGA and Broad GDAC Firehose data portal and then analyzed for comparing abundances by GraphPad Prism 5 software. ***P < 0.001. B. As described above, miR-27b (*left*) and miR-24 (*right*) levels in stomach adenocarcinoma samples were downloaded and then divided according to the stage classification. *P < 0.05. Data are shown as mean \pm standard deviation.

Supplementary Figure S2: N2IC down-regulates miR-23b through inducing E2F1. A. Schematic representation of human miR-23b-27b-24-1 promoter. Black lines represent the 14 putative E2F1-binding sites in this promoter. **B.** The transcript levels of E2F1 and c-Myc in SC-M1/myc-N2IC-His cells, SC-M1/Notch2i cells (#1 and #9), and their control cells (SC-M1/pcDNA3 cells and SC-M1/Luci cells, respectively) were measured by quantitative real-time PCR (*left*). The data were compared, after being normalized to GAPDH. The levels of E2F1 and c-Myc mRNAs in control cells were set to unity. Means of three independent experiments performed at least in triplicate are shown. *P < 0.05; **P < 0.01; ***P < 0.001. Whole-cell extracts of these cells were also analyzed by Western blot analysis using anti-Notch2 C-terminal (C-ter), anti-c-Myc, anti-E2F1, and anti-GAPDH antibodies (*right*). **C.** The relative miR-23b levels were determined by miRNA quantitative real-time PCR after co-transfection with N2IC-expressing construct pcDNA-myc-N2IC-His (N2IC) or its control vector pcDNA3.1-myc-His (-) and siRNA vectors against E2F1 (#28 and #53) or luciferase into SC-M1 cells (*left*). The level of miR-23b in SC-M1 cells transfected with siRNA vector against luciferase was set to unity. Means of three independent experiments performed at least in triplicate are shown. *P < 0.01. ##P < 0.01. Data are shown as mean \pm standard deviation. Whole-cell extracts of these cells were also analyzed by Western blot analysis using anti-triplicate are shown. *P < 0.01. ##P < 0.01. Data are shown as mean \pm standard deviation. Whole-cell extracts of these cells were also analyzed by Western blot analysis using anti-Notch2 C-terminal (C-ter), anti-E2F1, and anti-GAPDH antibodies (*right*).

Supplementary Figure S3: Establishment of miR-23b-expressing adenoviral system in NUGC-3, AZ521, and SC-M1 gastric cancer cells. NUGC-3, AZ521, and SC-M1 cells were infected with adenoviruses expressing miR-23b (Ad-miR-23b) or GFP (Ad-GFP) for 48 hours. Then the relative levels of miR-23b were determined using miRNA quantitative real-time PCR. The levels of miR-23b in the cells infected with adenoviruses expressing GFP were set to unity. *P < 0.05; **P < 0.01; ***P < 0.001. Data are shown as mean \pm standard deviation.

Supplementary Figure S4: Knockdown of miR-23b in SC-M1 cells after transfection with antagomir-23b. SC-M1 cells were transfected with 50 or 100 nM antagomir-23b (anti-miR-23b) or scrambled control (-) for 48 hours. The levels of miR-23b in the transfected cells were measured by miRNA quantitative real-time PCR. *P < 0.05; **P < 0.01. Data are shown as mean \pm standard deviation.

Oncotarget, Supplementary Materials 2015

No	tch2 3'-UTR 3753 nt. polyA	E	ts1 3'-UTR 3600 nt. polyA	
(nt. 2415-2422) 5'	GGUUUGGAGAAAGGGAAUGUGAA3'	(1354-1360 nt.) 5'	AGAGCAUUUCAAUAAAUGUGAC3'	
hsa-miR-23b 5'- CCAUUAGGGACCGUUACACUA -3'		hsa-miR-23b	5'- CCAUUAGGGACCGUUACACU -3'	
hsa-miR-23b	5'- CCAUUAGGGACCGUUACACUA -3'	hsa-miR-23b	5'- CCAUUAGGGACCGUUACACU -3'	
H. sapiens	GGUUUGGAGAAAGGGAAUGUGAA	H. sapiens	AGAGCAUUUCAAUAAAAUGUGAC	
P. troglodytes	GGUUUGGAGAAAGGGAAUGAGAA	P. troglodytes	AGAGCAUUUCAAUAAAAUGUGAC	
M. mulatta GGUUUGGAGAAAGGGAAUGUGAA		M. mulatta	AGAGCAUUUCAAUAAAAUGUGAC	
M. musculus GGAUUUAGGAGGAGGGAUGUGAA		M. musculus	AGAGCAUUUCAAUCAAAUGUGAC	
R. Norvegicus	GG-UUUGGGAGGAGGAUGUGAA	R. Norvegicus	AGAGCAUUUCAAUCAAAUGUGAC	
C. familiaris	C. familiaris GGCUUGGGGGAAGGGGAUGUGAA		GUUGCAUAGAAGUAAAAUGUGAC	
B. taurus	GGUUUUGCAGAAGUAAAUAUGAA	B. taurus	GGAGCCUAGGAAUAAAAUGUGAC	

Supplementary Figure S5: The putative miR-23b-binding sites in Notch2 receptor and Ets1 3'-UTRs. There are putative miR-23b-binding sites located at nucleotide 2415 to 2422 from the start of Notch2 receptor 3'-UTR (*left*) and at nucleotide 1354 to 1360 from the start of Ets1 3'-UTR (*right*). The sequences of miR-23b are aligned with the 3'-UTRs of Notch2 receptor and Ets1 in human (*H. sapiens*), chimpanzee (*P. troglodytes*), monkey (*M. mulatta*), mouse (*M. musculus*), rat (*R. norvegicus*), dog (*C. familiaris*), and cow (*B. taurus*).

Assays		Sequence (5' to 3')	Amplicon (bp)	
siRNA	E2F1 (#28) E2F1 (#53) Ets1 (#917) Ets1 (#918)	CTACTCAGCCTGGAGCAAGAA ACCTCTTCGACTGTGACTTTG ATCCCGCTATACCTCGGATTA GACCGTGCTGACCTCAATAAG		
PCR	Notch2 3'-UTR	F TCTAGATCTTTTTCTTGGACTAC R TCTAGATCTCAACAAAACATTAC	566	
	Ets1 3'-UTR	F AATTGCTCGAGTGGCACTGAAG R CTAGCGGCCGCCTCTCCAGCAA	3,519	
	miR-23b	F ATAAGATCTCCACCTCTTTGCTAG R ATACTCGAGCATCTTCCTCAGCTG	301	
real-time PCR	CD44	F TCCAACACCTCCCAGTATGACA R GGCAGGTCTGTGACTGATGTACA	83	
	Nanog	F CCTGTGATTTGTGGGCCTG R GACAGTCTCCGTGTGAGGCAT	78	
	Oct4	F GGTGGAGGAAGCTGACAACAA R AAATTCTCCAGGTTGCCTCTCA	123	
	SOX-2	F GTATCAGGAGTTGTCAAGGCAGAG R TCCTAGTCTTAAAGAGGCAGCAAAC	78	
	E2F1	F AGCTGGACCACCTGATGAAT R GTCCTGACACGTCACGTAGG	95	
	Ets1	F TCACTAAAGAACAGCAACGA R ATTCACAGCCCACATCAC	92	
	Notch2	F GTGAGGGAGACATCAACGAG R GTAAAGGCACTACGGCAAAC	109	
	GAPDH	F AAATCCCATCACCATCTTCC R TCACACCCATGACGAACA	194	

Supplementary Table S1. Sequence of primers for siRNA, PCR, and real-time PCR