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SUPPLEMENTARY METHODS

Flow cytometry – gating strategy

A comprehensive gating strategy was employed on 
data retrieved from flow cytometric analyses of ascites and 
tumor tissues on a BD LSRFortessa™ cell analyzer (BD 
Biosciences, Franklin Lakes, New Jersey, USA) equipped 
with three lasers (405 nm, 488 nm, and 640 nm) and 
FACSDiVA software (BD, New Jersey, USA).

Digital files from around 20,000 events were 
exported in fcs 3.0 format and gating was performed using 
FlowJo software (v7.6.2). Prior to analyzing actual patients’ 
material a gating template was set up using PBMCs and test 
ascites to ensure a uniform analysis of all samples.

Firstly, the flow cytometry data set of each 
individual patient (comprising data from ascites single 
cells, spheroids, primary and peritoneal tumor tissue) was 
visually assessed in the forward scatter (FSC)–side scatter 
(SSC) plot (Fig. S1A). Secondly, cell doublets and triplets 
were discriminated in the SSC-area (SSC-A) and FSC-
width blot (FSC-W) (Fig. S1B). To ensure the counting 
of whole cells and to gate out cell debris a cut-off at 400 
in the FSC channel was employed (Fig. S1C). Events 
from the single cell gate without debris were then checked 
for viability in the SSC-A and Alexa-405-A fluorescence 
channel (emission of live/dead stain, Fig. S1D). 
Furthermore, immune cells were discriminated by gating 
out CD45 positive events, visible in the FITC channel 
(Fig. S1E). In the PerCP-eFluor710 channel (Fig. S1F) 
cells were sorted in EpCAM positive and negative events, 
for CD44 positivity in the PE-Cy7 channel (Fig. S12H), 
for L1CAM positivity in the PE channel (Fig. S1G) and 
for CD133 positivity in the APC channel (Fig. S1I). 
Furthermore, EpCAM+ (Fig. S1J) and EpCAM- (Fig. S1K) 
events were gated for combined L1CAM/CD44, L1CAM/
CD133, and CD44/CD133 double positivity. The resulting 
frequencies of populations (in % of living/CD45- events) 
were collected in a table (cf. Tab. S2).

RNA-sequencing and bioinformatics

Sequencing libraries were prepared from 200 ng 
total RNA isolated with the miRNeasy Mini Kit (Qiagen, 
Hilden, Germany). RNA quality was controlled on a 
RNA Pico Chip (Bioanalyzer 2100, Agilent, Santa Clara, 
CA, USA) and quantified with NanoDrop ND-1000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
USA) and RiboGreen RNA Reagent (Invitrogen, 
Carlsbad, CA, USA). Ribosomal RNAs were removed 
using the Ribo-Zero™ rRNA Removal Kit (Epicentre, 
Madison, WI, USA) and libraries prepared employing the 
NEXTflex RNA-Seq and Barcoding Kits (Bioo Scientific, 

Austin, TX, USA) with halved reaction volumes with an 
epMotion 5075 automated pipetting system (Eppendorf, 
Hamburg, Germany) according to the manufactures 
instructions. Quality of libraries was assessed on a DNA 
High Sensitivity chip (Bioanalyzer 2100) and quantified 
with a digital PCR system (QX100™ Droplet Digital™ 
PCR System, BioRad, Hercules, CA, USA) and the ddPC 
Library Quantification Kit (BioRad). Eight libraries were 
pooled equimolarly and sequenced for 50 bp paired ends 
on an Illumina HiSeq 2000 system (San Diego, CA, USA). 
After demultiplexing of the reads the quality of the libraries 
was checked with FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and RSeQC (1) and 
the paired end reads mapped to the human genome and 
transcriptome (HG19) with the RNA Seq Unified Mapper 
RUM v2.0.4 (2). To filter out all reads belonging to putative 
circular RNAs, which would compromise differential 
gene expression analysis because of their higher stability,  
the circularization coordinates for each circular RNA 
were predicted with scripts from the Rajewsky group 
(http://circrna.org 2013/06/12, (3)) and all read pairs were 
removed from the SAM-files which mapped completely 
inside the circularization coordinates (4). Filtered SAM-
files were finally used for counting in fragments into the 
gene model from the GENCODE Project (version 18, 
http://www.gencodegenes.org/) using htseq-count (HTSeq 
v0.5.4p2, http://www-huber.embl.de/users/anders/HTSeq, 
(5)) with option “union”. Differential gene expression was 
analyzed with R-package limma 3.16.6 (6) using sample 
type (A, S, P, or M) and mode of tumor spread as variables 
for the design matrix. Raw read counts were loaded using 
limma’s voom-function, linear models fitted for each 
gene using the design matrix, and differentially expressed 
genes called using an empirical Bayes statistics (eBayes-
function). False discovery rates (FDR) were estimated with 
Benjamini and Hochberg's method. Following comparisons 
(contrasts) were calculated: miliar tumor spread versus 
non-miliar tumor spread in all samples, in A/S, and in 
P/M. Also, A/S and P/M were compared in the non-miliary 
and in the miliary subset of samples. For the latter two a 
FDR cut-off of 5% and for the former a 10% cut-off was 
employed (see Table “SignificantDiff_Genes.xlsx” in the 
supplementary data file).

Dimensionality reduction of normalized log2 gene 
expression values was performed with the non-linear 
dimensionality reduction method Isomap (7) implemented in 
the R-package RDRToolbox 1.10.0. Three dimensions were 
calculated with the modified version of the original Isomap 
algorithm including the nearest and farthest 21 neighbors 
and the first two dimensions are shown in a plot (dimension 
1 versus dimension 2, Supplementary Figure S2).

The Differential Dependency Pathway between 
miliary and non-miliary samples was constructed with 
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the KDDN plugin v1.1.0 (8) for Cytoscape 3.2.0 (9) using 
default parameters and 1 000 permutations. Disturbed 
KEGG pathways were assessed using significant genes 
with their log2 fold changes by Signaling Pathway Impact 
Analysis (SPIA v2.18.0 (10)) and significant KEGG 
pathways were illustrated by R-package pathview v1.6.0 
(11). For the comparison of miliary versus non-miliary 
in P/M samples (only two genes significant) the more 
sensitive method PAGI v1.0, based on global influence 
from the internal effect of pathways and crosstalk between 
pathways, was used. In Supplementary Figure S4 global 
influence factors (GIFs) of the highest impact genes are 
shown. Gene set analysis using the Molecular Signatures 
Database (MSigDB) v4.0 (12) and the epithelial and 
mesenchymal gene sets (13) was performed with the 
Quantitative Set Analysis for Gene Expression (QuSAGE) 
method (14). Gene sets for miliary (110 genes) and non-
miliary (162 genes) were defined from P/M samples by the 
R-package CellMix v1.6.2 (15) using the method abbas 
with gene expression values averaged over gene symbols 
and a threshold of 0.01 (Table “Spread_gene_signatures.
xlsx” in the supplementary data file). Annotation of 
both gene sets was performed with the disease ontology 
database (DO terms, (16)) and illustrated with the 
R-package DOSE v2.4.0. Finally, the R-package dnet 
v1.0.6 (17) was used to find the high-scoring networks 
for each comparison, either using the STRING v9.1 
database of known and predicted protein interactions or 
the more selective CCSB Human Interactome database 
(HI-III, preliminary release 1.3, downloaded from http://
interactome.dfci.harvard.edu) of only experimentally 
verified protein-protein interactions.

Annotation of differentially expressed non-coding 
genes was performed with the NONCODE v4 database 
(18). Briefly, non-coding genes were mapped to the non-
coding identifier of the NONCODE v4 database and each 
annotable non-coding gene was connected to the ten most 
significant GO-ontology terms (file “NONCODEv4_
human.func.gz” from the download-site of http://www.
bioinfo.org/noncode). Finally, a network from all of these 
edges was built and all nodes with less than four edges 
were removed. The remaining network was plotted and 
the nodes were color coded according to the log2 fold-
changes between the respective comparisons. Circular 
nodes represent non-coding genes and grey square nodes 
GO terms (Figure S3).

Survival analysis

Gene expression data and accompanied clinical 
information were the same as used in Pils et al. (19), 
downloadable from the Gene Expression Omnibus 
repository, GSE49997. The Tumor Spread Factor (TSF) 
and the Epithelial Mesenchymal Factor (EMF) were 
calculated from normalized gene expression data as 

outlined in the main manuscript (164 genes out of 272 
could be mapped for the TSF and 283 genes out of 308 
for the EMF). Survival analysis was performed in R and 
Cox regression model selection was done by minimizing 
the Akaike information criterion (AIC) by the stepAIC 
function from the MASS R-package.
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Supplementary Figure S1: Gating strategy for flow cytometric analysis. The chronological sequential of gates is resembled 
by the alphabetical order of the letters. B-E Each following plot is constructed from the gated population of the plot before. F-I Gating of 
CD45- populations. J Gating of CD45- EpCAM+ populations, K gating of CD45-EpCAM- populations.

SUPPLEMENTARY FIGURES AND TABLES
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Supplementary Figure S2: Isomap. of all samples using differentially expressed genes between miliary and non-miliary (FDR 5%).
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Supplementary Figure S3: Gene ontology (GO) annotation network. of significantly differentially expressed non-coding genes 
from comparisons miliary versus non-miliary in A. all samples, B. in AS samples, AS versus PM in C. miliary, and in D.) non-miliary 
samples. Circle nodes represent non-coding genes, colored according to log2 fold-changes in the respective comparison (red, up in miliary 
or AS). Square nodes represent connected GO terms (CAVE: in comparison AS versus PM in miliary all genes were downregulated in the 
former, therefore the color code represents only down-regulated fold-changes between -4 (red) and -8 (green)).
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Supplementary Figure S4: PAGI analysis. showing the global influence factors (GIF) of each of the 30 highest genes from 
comparisons miliary versus non-miliary in AS and PM samples (upper plot) and boxplots of the gene expressions of six of the genes with 
the highest GIF values in one of the comparisons (lower panel).
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Supplementary Figure S5: High-scoring protein-protein interaction (PPI) networks. using only experimentally validated 
PPIs. Colors correspond to log2 fold-changes in the comparison (red, up in miliary mode of tumor spread for upper panel and up in AS for 
lower panel).
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Supplementary Figure S6: A. Disease ontology (DO) network of the protein coding miliary gene set (left) and the 
non-miliary gene set (right). Colors correspond to fold changes between miliary (red, up in miliary) and non-miliary 
samples (green, up in non-miliary). B. EMF gene set analysis (qusage) showing differences in the epithelial (upper panel) and the 
mesenchymal (lower panel) gene sets between all AS and PM samples from patients with either miliary or non-miliary tumor spread. 
The x-axis (“Activity”) represents probability density functions (pdf) of fold-changes of every gene in the gene-set (colored) between the 
corresponding comparison and a combined probability density function over all genes in the gene-set (bold black). A combined pdf around 
0 indicates no change in the activity of the gene set in the corresponding comparison. C. Comparison between Tumor spread factor (TSF, 
red, left y-axis) and Epithelial mesenchymal factor (EMF, grey, right y-axis) in all analyzed patients’ samples. Boxplots showing the TSF 
in different tissues (P, M, A, and S) separated by miliary (M, green) and non-miliary (nM, blue).
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Supplementary Table S1: Patients enrolled in the study and performed analyses
Patient Age FIGO Grade Lymph 

nodes 
Spread1 Ascites 

(ml)
Mutation RNA-seq2 FC2 Residual 

Tumor3

5 80 IIIC G2 pN1 1 < 500 TP53 M - 1

6 70 IIIC G2 pNX 2 >500 TP53 A - 1

8 53 IIIC G2 pN1 0 0 TP53 A, P - 0

9 62 IIIC G2 pNX 2 >500 TP53 A - 1

12 55 IIIC G3 pN1 0 >500 TP53 P A, P, M 0

13 60 IIIC G3 pN1 2 >500 TP53 A, S A, S 1

16 64 IIIC G3 pNX 2 >500 TP53 A, S, P, M A, S, P, M 1

21 68 IIIC G3 pNX 2 >500 TP53 A, S, M A, S, M 0

24 50 IIIB G2 pNX 2 >500 TP53 A, S, P A, S, P, M 1

25 50 IIIC G3 pN1 2 >500 TP53 A, S, M A, S, P, M 0

27 66 IIIA G3 pN0 1 0 TP53 P P 0

28 57 IIIC G3 pNX 2 < 500 TP53 A, S, M A, S, M 0

30 41 IIIC G3 pN0 1 < 500 TP53 - P, M 0

31 69 IIIB G3 pNX 2 < 500 n.d.4 - M 0

35 56 IIIB G3 pNX 2 0 TP53 M M 0

39 50 IIIC G3 pN0 2 0 TP53 M - 0

41 49 IIC G3 pN0 0 >500 TP53 A, S, P A, S, P 0

42 49 IIIB G3 pN0 1 >500 TP53 A, S, P A, S 0

53 48 IIIC G3 pN1 1 0 TP53 P, M P, M 0

54 34 IV G3 pNX 2 >500 TP53 A, S, M A, S, M 1

55 81 IIa G3 pN0 0 0 TP53 P - 0

58 66 IIIC G3 pNX 1 0 TP53 P, M - 0

62 54 IIIC G3 pN0 1 < 500 TP53 S - 0

1 Code as defined in Table 1.
2 A, ascites single cells; S, ascites aggregated cells (“spheroids”); P, solid ovarian tumor mass (“primary tumor”); M, solid 
peritoneal tumor mass (“metastasis”).
3 0, no residual tumor; 1, macroscopic residual tumor.
4 n.d., not determined.
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Supplementary Table S2: Gated cell populations and frequency-dependencies. Freq., frequency.
Population Name in Graphs Statistics

Living cells alive 100%

CD45+ C45p Freq. of alive 100%

CD45- C45n Freq. of alive

CD44+ C44pC45n Freq. of alive*

CD45- CD133+ C133pC45n Freq. of alive*

L1CAM+ L1pC45n Freq. of alive*

EpCAM+ EpC45n Freq. of alive*

CD44-CD133+ EpC133pC44n Freq. of CD45-

CD44+CD133+ EpC133pC44p Freq. of CD45-

CD44+CD133- EpC133nC44p Freq. of CD45-

CD44-CD133- EpC133nC44n Freq. of CD45-

CD44-L1CAM+ EpL1pC44n Freq. of CD45-

CD44+L1CAM+ EpL1pC44p Freq. of CD45-

EpCAM+ CD44+L1CAM- EpL1nC44p Freq. of CD45-

CD44-L1CAM- EpL1nC44n Freq. of CD45-

CD133-L1CAM+ EpC133nL1p Freq. of CD45-

CD133+L1CAM+ EpC133pL1p Freq. of CD45-

CD133+L1CAM- EpC133pL1n Freq. of CD45-

CD133-L1CAM- EpC133nL1n Freq. of CD45-

CD44+ CD44pEp Freq. of CD45-

CD45- EpCAM- EnC45n Freq. of alive

CD44-CD133+ EnC133pC44n Freq. of CD45-

CD44+CD133+ EnC133pC44p Freq. of CD45-

CD44+CD133- EnC133nC44p Freq. of CD45-

CD44-CD133- EnC133nC44n Freq. of CD45-

CD44-L1CAM+ EnL1pC44n Freq. of CD45-

EpCAM- CD44+L1CAM+ EnL1pC44p Freq. of CD45-

CD44+L1CAM- EnL1nC44p Freq. of CD45-

CD44-L1CAM- EnL1nC44n Freq. of CD45-

CD133-L1CAM+ EnC133nL1p Freq. of CD45-

CD133+L1CAM+ EnC133pL1p Freq. of CD45-

CD133+L1CAM- EnC133pL1n Freq. of CD45-

CD133-L1CAM- EnC133nL1n Freq. of CD45-

CD44+ CD44pEn Freq. of CD45-

* only for ascites samples, in tissues: frequency of CD45-.


