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Appendix E1 

The typical multicomponent spin-echo T2-mapping technique requires acquisition of images at 

varying echo time, and the image data are fit using a multiexponential decay model. In 

comparison, the mcDESPOT method fits observed spoiled gradient-recalled echo and balanced 

steady-state free precession signals at varying flip angle. The observed spoiled gradient-recalled 

echo and balanced steady-state free precession signals can be modeled by using a two-pool water 

exchanging system at steady-state condition as described below. 

Consider a composite spin system including two exchanging water pools (fast (F) and 

slow (S) relaxing water pools) described in the mcDESPOT method. On the basis of the Bloch-

McConnell equation, the spin evolution of magnetization can be expressed as follows: 

C
dM

dt
AM  ,  

where vector x,F x,S y,F y,S z,F ,

T

z S = M M M M M MM     contains components of the 

transverse (x, y) and longitudinal (z) magnetizations of each pool, and vector 

1,F F 1,S S

T

 = 0 0 0 0 R f R fC     . Here, ‘T’ denotes the transpose operation and  is the 

proton density term, fF and fS are fractional magnetizations for fast and slow water proton pools 

normalized by total water magnetization, respectively. R1 = 1/T1 is longitudinal relaxation rate. d 

is the notation symbol for differentiation , t is time. All relaxation and exchange terms are 

included into a matrix, A, defined as follows: 
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where kSF, kFS are rates of (diffusion-driven) magnetization exchange between S and F pools and 

vice versa, respectively, and  is the off-resonance frequency caused by B0 field 

inhomogeneity. R2 = 1/T2 is the transverse relaxation rate. At chemical equilibrium, the fractional 

magnetization and exchange rates are related by: 

FB F SF Sk f k f  
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For the balanced steady-state free precession signals (bSSFP) signal, an analytical solution of the 

above equation can be derived for the steady-state magnetization, SS

bSSFPM : 

 α
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where SS SS SS SS SS SS SS

bSSFP x,F x,S y,F y,S z,F z S

T

,M M M M M M M    , I is the 6 × 6 identity matrix, TR is 

the sequence repetition time and matrix R is a rotation matrix with the prescribed flip angle  , 

expanded as follows: 

α

1 0 0 0 0 0

0 1 0 0 0 0

0 0 cosα 0 sinα 0

0 0 0 cosα 0 sinα

0 0 sinα 0 cosα 0

0 0 0 sinα 0 cosα

R

 
 
 
 

  
 
 
 

 

 

The observed bSSFP signal, obs

bSSFPM , is calculated as the magnitude of the complex summation of 

the transverse magnetizations of water components F and S: 
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Spoiled gradient-recalled echo (SPGR) signal can be derived in a similar fashion. An analytical 

solution to the equation for the steady-state signal at SPGR sequence, SS

SPGRM , can be expressed 

in the matrix form yielding the steady-state magnetization: 
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where 
T

SS SS SS

SPGR z,F z,SM M M    , and I is now the 2 × 2 identity matrix. The observed SPGR 

signal, obs

SPGRM , can be calculated as follows: 

 obs SS SS
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