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1 Shared intentions: discussion

Here we relate the current study to work on shared intentions and collaborative behaviour that has been
published in the fields of philosophy, developmental psychology and game theory. Philosophy is foundational
to considering joint action and the sharing of intentions. The evidence from psychology is motivational,
in that it stresses the importance of collaboration to human development, even going so far as to suggest
that it is the ability to share intentions and collaborate which separates humans from the other great apes.
Game theory is the methodological tool that we choose to use and adapt to model the implications of
sharing an intention and behaving collaboratively. Finally, we consider the difference between altruistic
actions and the mutualism of collaboratively sharing intentions.
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1.1 Philosophy

It has been argued in the philosophical literature that the intentions behind collective acts can be distinct
from an aggregation of individual intentions (Bratman, 1992; Searle, 1990). This is shared/collective
intentionality, the idea that “we will do X” is distinct from “I will do X [because she is also doing X]”.
Collective action can occur through either mode of reasoning. Consider the following two player game. It
is a coordination game in which the two players (me and you) only achieve payoffs if they coordinate on the
same action. Given coordination on the same action, the players would rather that this action be action A.

A B

A 2 0
B 0 1

When it comes to describing actions in such a game, an expression such as (W1) “We are performing
action B” can be considered equivalent to an expression such as (I1) “I am performing action B and
you are performing action B”. However, when it comes to describing intentions, there can be no such
equivalence. Consider the expressions (W2) “We intend to do B” and (I2) “ I intend to do B and I think
that you intend to do B”.1 It can be argued that, given that the players know the payoffs of the game, that
(W2) does not make sense because the intended action profile is Pareto inefficient: both players could do
better if they instead intended to do A. Moreover, such an alternative intention would be self enforcing in
that given a shared intention to do A, neither of the players need worry about a subsequent deviation by a
cheating partner. However, such an argument does not apply to (I2). If I truly believe that you intend to
do B, then it is optimal for me to do B (and vice versa), regardless of the Pareto inefficiency of the action
profile (B,B). To phrase this another way, in the context of optimization, individual intentions give rise to
individual optimality constraints, whereas shared intentions give rise to joint optimality constraints. In the
latter case, the object which is chosen optimally is a vector of the actions of multiple players.2

There has been debate amongst philosophers as to whether shared intentions can always be reduced to
individual intentions plus beliefs about the intentions of others (Bratman, 1992; Butterfill, 2012; Gilbert,
1990; Gold and Sugden, 2007; Searle, 1990; Tuomela and Miller, 1988; Velleman, 1997). The current
paper shows that the behaviour implied by the sharing of intentions, that is the joint optimization of action
choice, can evolve in the absence of hierarchical beliefs (I think that you think that I think...) and other
complex modes of reasoning.

1.2 Psychology

The current study is further motivated by recent work in developmental psychology. Experiments with
children suggest that the collaborative urge in humans is a primal one, which develops early in infancy,
prior to much of our aptitude for rational inference, and certainly prior to our ability to articulate complex
hierarchical beliefs such as are required by traditional game theory (See Tomasello and Rakoczy, 2003 for
a summary, as well as Tomasello et al., 2005 and the critical responses contained therein). Moreover,
this collaborative urge is considerably weaker in non-human great apes (Tomasello and Carpenter, 2007;

1Searle (1980) distinguishes between prior intentions, which are held ahead of the intended action, and intentions in action,
which are held contemporaneously with the intended action being carried out. Considering this latter type of intention, in the
notation of the cited paper, the presentational content of the intention which forms part of (I2) is

( B as a result of this intention in action ).

Similarly, we can write the presentational content of the intention in (W2) as

( (B,B) as a result of this intention in action ).

Note that the intentions are similarly causal with respect to their intended actions. The difference is that the latter of the two
intentions, the shared intention, has a vector of actions by multiple players as its intended outcome.

2Gold and Sugden (2007) go further, arguing that it is the process by which an intention is formed that makes it collective
(shared) or not. They suggest modes of reasoning by which collective intentions may be formed. These modes of reasoning
all involve the satisfaction of joint optimality constraints.
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Tomasello and Herrmann, 2010; Wobber et al., 2014). To summarize in the words of Tomasello (2014):

...humans are able to coordinate with others, in a way that other primates seemingly are not, to
form a “we” that acts as a kind of plural agent to create everything from a collaborative hunting
party to a cultural institution.

(1)

This accumulated evidence has provided support for the hypothesis that the human ability to collaborate
led to the development of our unique cognitive skill set, rather than causality running only in the opposite
direction. In short, human collaborative activity provided a niche in which sophisticated modes of reasoning
could evolve. This is known as as the shared intentionality hypothesis (Call, 2009) or the Vygotskian
intelligence hypothesis (Moll and Tomasello, 2007; Tomasello, 2014; Vygotsky, 1980).

The principal philosophical work to which Tomasello and his coauthors make reference when discussing
the sharing of intentions is the work of Bratman (1992). However, although Bratman does not argue that
shared intentions can be wholly described by individual intentions plus beliefs, he does make use of the
notion of common knowledge (I know that you know that I know...ad infinitum) in his discussion of shared
cooperative activity. Of course, common knowledge requires hierarchical thought and thus a considerable
degree of sophistication in reasoning. This raises a potential problem of circularity: if collaboration requires
sophisticated reasoning, how could collaboration have arisen prior to such reasoning? Our work addresses
this problem with a very clear answer. Consistent with the philosophical analysis discussed in Section
1.1 and with the psychological evidence summarized in statement (1), we model the sharing of intentions
as collective agency: individuals who can share intentions will sometimes come together and adjust their
actions to their mutual benefit. That is, they engage in joint strategic choice.

(i) We show that joint goal oriented behaviour, as implied by shared intentions, could evolve prior
to sophisticated reasoning (our agents are myopic optimizers). This is plausible: developmental
studies of children indicate that they can undertake intentional action at earlier ages than they can
understand beliefs (Baron-Cohen, 1994; Call and Tomasello, 1999; Carpenter et al., 1998a,b; Wellman
and Bartsch, 1994; Wellman et al., 2001).

(ii) Moreover, we show conditions under which such joint behaviour would not evolve. That is, the
ability to collaborate is not always an unambiguous good. Sometimes the short term benefits to
collaboration can work to the long term detriment of a society. In a model of multi-level selection
this can work against the evolution of a collaborative disposition.

The above points show that the ability to collaborate and share intentions could be selected for or against
differently, depending on geographical location, ecological conditions, climate variability and species. The
last of these is particularly important, as any story that explains how humans could become the collaborative
species we are today, should explain how it could be that this is less so in other great apes.

1.3 Game theory

There exists a large literature in cooperative game theory on the behaviour of coalitions. For a survey
the reader is referred to Peleg and Sudholter (2003). There is a smaller but established literature at the
intersection of noncooperative and cooperative game theory (See, for example Ambrus, 2009; Aumann,
1959; Bacharach, 2006; Bernheim et al., 1987; Konishi and Ray, 2003; Luo and Yang, 2009). There is also
a large and established literature in evolutionary game theory that seeks to explain altruism (‘cooperation’),
where altruism manifests itself through the actions that players choose (See Eshel and Cavalli-Sforza, 1982;
Nowak, 2006; Wilson and Dugatkin, 1997, and references contained therein). The sharing of intentions
and collaboration is, however, different from altruism. Rather than manifest itself through the identity of
chosen actions, as altruism does, shared intentions manifest themselves through how actions are chosen.
Specifically, when actions are chosen, collaborating players optimize over joint strategy choice. This does
not imply any kind of concern for the well-being of others, merely an efficient (in the short term) way of
attaining higher payoffs in conjuction with other players. Work on the incorporation of such collaborative,
coalitional behaviour into evolutionary dynamics forms a relatively new and rapidly growing literature
(Newton, 2012a,b; Sawa, 2014), although considerable work has previously been done in the context of
matching, which in effect concerns coalitions of size two (Diamantoudi et al., 2004; Jackson and Watts,
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2002; Klaus et al., 2010; Newton and Sawa, 2015; Roth and Vande Vate, 1990). The result, used in the
current study, that strategic updating by coalitions can both slow (the conservative effect) and hasten (the
reforming effect) the convergence of a population to an efficient ‘new’ action, was first analyzed in Newton
and Angus (2013, 2015). The cited work contains an in depth analysis of such effects, showing that they
are supported on a wide variety of networks beyond the scale free networks that are used in the current
study.

1.4 Mutualism vs. altruism

The current study concerns the evolution of the sharing of intentions and collaboration by individuals
to their mutual benefit. That is, the sharing of intentions is a mutualistic activity and not an altruistic
one, although an individual who shares his intentions could in theory have altruistic motives. Models of
multi-level selection are by now standard in the literature on the evolution of altruism (See Bowles, 2006;
Traulsen and Nowak, 2006). A recent survey and critique of this literature can be found in Rusch (2014).
We use multi-level selection to model the evolution, and non-evolution, of the mutualistic behaviour that
is collaborative action choice in a game. To model this without confounding issues of altruism we use a
simple coordination game as the underlying game.

Old New
Old 1 0
New 0 ατ

Table A: Payoffs to within-deme interactions, when the deme has current technology level τ . ατ > 1.
Entries are interaction-payoffs of an individual whose strategy is given by the row when interacting with an
individual whose strategy is given by the column.

The altruism literature focuses on explaining efficient coordination in prisoner’s dilemma type situations.
The question of whether efficient collaboration would always evolve in situations in which individuals’
interests are perfectly aligned has, to the best of our knowledge, not been addressed. West et al. (2007)
distinguish four types of behaviour: selfishness - actions that benefit oneself but harm others (+,−),
mutualism (+,+), altruism (−,+) and spite (−,−). Rusch (2014) notes that selfishness and mutualism
are often taken for granted, with research focusing on the evolution of altruism and spite. The current
study indicates that this neglect of the evolution of mutualism should be reconsidered, and that pairwise
and small-group mutualistic interaction (coalitional updating) can sometimes work to the detriment of the
welfare of the larger society (the deme).

It is thought that many instances of collaboration amongst hunter gatherers are mutualistic. Examples
include hunting for whales and other large animals (Alvard, 2001; Alvard and Nolin, 2002) and fishing
expeditions (Sosis et al., 1998). See Smith (2003) for a survey. It has been subsequently noted by Bird
et al. (2012) that group hunting may not always be mutualistic for all members of a hunting party as, for
example, sharing norms may disproportionately reduce the take of the best hunters. However, despite the
usefulness of modern anthropological evidence, our model does not concern modern hunter-gatherers, and
the authors find it hard to conceive of a species developing sophisticated egalitarian cultural institutions
prior to the ability to collaborate in simple mutualistic situations.

2 Multi-level selection

2.1 Strategy updating

Strategies are updated by single individuals but also by pairs of individuals who can share their intentions.
A pair of players can only share intentions if both players in the pair are SI types and they are neighbours
on the interaction graph. Each period within a generation, either one individual or one pair of individuals
is randomly selected to update their strategy.

The algorithm by which the set of updating individuals is selected is as follows. Firstly, a single
individual is selected uniformly at random from all of the individuals in the deme. Let this individual be
labeled i. If individual i is an N type, then he will update his strategy on his own. We return the set of
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updating individuals {i}. If individual i is an SI type, then uniformly at random choose k̄ ∈ {1, 2}. If
k̄ = 1, then return the set of updating individuals {i}. If k̄ = 2, then uniformly at random choose a set
of players from the set of all feasible coalitions and return this set as the set of updating individuals. For
example, if i has three neighbors who are SI types, j1, j2 and j3, then there are four feasible coalitions:
{i}, {i, j1}, {i, j2}, {i, j3}, any of which may be returned as the set of updating individuals.

Note that due to combinatoric considerations, when there are many SI types in a deme, the number
of feasible coalitions of size k̄ grows rapidly in k̄. Therefore, it is to avoid a strong bias in favour of larger
coalitions that we select the maximum coalition size k̄ before randomizing over possible coalitions.

When a single individual (i.e. not a pair) is selected, he plays a better response to the strategies of the
other individuals. That is, holding the strategies of all other individuals fixed, he chooses some strategy
(‘old’ or ‘new’) that gives him a payoff at least as high as his current payoff. If both strategies give a payoff
at least as high as the current payoff, then he chooses uniformly at random.

When a pair of neighbouring SI types is chosen to update their strategies, they can share intentions
and collaborate in choosing identical strategies (both choose ‘old’ or both choose ‘new’), but will only do
so if by doing so they obtain payoffs at least as high as their current payoffs, holding the strategies of all
other individuals fixed. If no such opportunity for successful collaboration exists, both individuals remain
playing the same strategy as before. If there are multiple opportunities for successful collaboration; that
is, both individuals switching to ‘old’ and both individuals switching to ‘new’ would weakly increase the
payoffs of both individuals in the pair, then either of these possibilities occurs with probability one half. In
summary, the pair plays a coalitional better response (Newton, 2012b; Newton and Angus, 2015).

In our comparison treatments we sometimes include the possibility of updating coalitions of players
that contain more than two players; that is, k > 2. For these treatments, every member of a coalition
chosen to update must be an SI type. Furthermore, coalitions chosen to update must be connected in
the following way: the subgraph induced by restricting the interaction graph to the vertices corresponding
to the individuals in the given coalition must be connected. The interpretation of this is that individuals
who share their intentions as part of a coalition must have some form of communication and interaction in
order for them to do so. Note that for k = 2, this description of feasible coalitions reduces to our previous
definition of feasible coalitions as neighbouring pairs on the interaction graph. The process of selecting an
updating coalition is as above, but with k̄ being selected uniformly at random from {1, . . . , k} instead of
from {1, 2}. Coalitions of size k > 2 play coalitional better responses in a similar manner to coalitions of
size k = 2 as described above (replacing ‘both individuals switching’ with ‘all individuals in the coalition
switching’).

Finally, when any player has the opportunity to update his strategy, we allow him to make a mistake:
independently with small probability ε any updating individual switches to a random strategy instead of to
their intended strategy (Young, 1993).

2.2 Deriving thresholds for example networks

Here we illustrate threshold effects for conservative and reforming effects of SI through a discussion of
two example networks, the network of overlapping triangles of Figure A(a) and the square lattice with von
Neumann neighborhood of Figure A(b). For the purpose of this example we shall only consider α < 3.
Consider the situation illustrated in Figure A(a) in which all individuals are playing strategy ‘old’ except
for the individual labeled a, the individual labeled b, and their mutual neighbor. Note that such a strategy
profile can be reached irrespective of whether any of the individuals in the population are SI types. For
example, starting from a profile at which every player plays ‘old’, it might be the case that individual a
has an updating opportunity, makes a mistake (with probability ε), and switches to ‘new’ when his best
response is to remain playing ‘old’. Individual b could make a similar mistake, switching to ‘new’, following
which the best response of the mutual neighbor of a and b, when called upon to update, would be to
switch to ‘new’.

Consider the individual labeled a in Figure A(a). Let oa be the number of his neighbors who play ‘old’,
and na be the number of his neighbors who play ‘new’. If individual a is selected to update his strategy as
an individual (whether he is an N or an SI type), he will gain from switching from ‘new’ to ‘old’ whenever
αna < oa. Now, at the strategy profile depicted in Figure A(a), oa = 2 and na = 2, so this condition
becomes α < 1, which is impossible. Hence a will remain playing ‘new’. Now, consider the case that
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Figure A: Example networks. Individuals playing ‘new’ indicated by filled circles.

neighboring individuals a and b are both SI types and are selected to update strategies as a pair. They will
both gain from switching from ‘new’ to ‘old’ if αna < oa+1 and αnb < ob+1. As oa = ob = na = nb = 2,
these conditions both become α < 3/2. So, from the strategy profile depicted in Figure A(a), if α < 3/2,
the presence of SI types can cause a reduction in the number of individuals choosing ‘new’. The cluster of
individuals playing the new technology can be eradicated by coalitional better responses.

Now, consider the individual labeled c in Figure A(a). Let oc be the number of his neighbors who
play ‘old’, and nc be the number of his neighbors who play ‘new’. If individual c is selected to update
his strategy as an individual (whether he is an N or an SI type), he will gain from switching from ‘old’ to
‘new’ whenever αnc > oc. Now, at the strategy profile depicted in Figure A(a), oc = 3 and nc = 1, so this
condition becomes α > 3. Hence c will remain playing ‘old’ unless α is very high. Now, consider the case
that neighboring individuals c and d are both SI types and are selected to update strategies as a pair. They
will both gain from switching from ‘old’ to ‘new’ if α(nc + 1) > oc and α(nd + 1) > od. As oc = od = 3
and nc = nd = 1, these conditions both become α > 3/2. So, from the strategy profile depicted in Figure
A(a), if α > 3/2, the presence of SI types can cause additional pairs of individuals adjacent to the set of
individuals choosing ‘new’ to switch to ‘new’. The set of individuals playing the new technology can be
expanded by coalitional better responses.

Hence, we see that for the network of overlapping triangles, an important threshold value is α = 3/2.
For values of α below this threshold, SI slows the adoption of new technologies. For values of α above
this threshold, SI speeds the adoption of new technologies. The argument above can be repeated almost
word for word for the square lattice with von Neumann neighborhood with strategy profile and labeling of
individuals given by Figure A(b). For precise, analytic results for vanishing mistake rates (ε→ 0) we refer
the reader to Newton and Angus (2013, 2015). The cited work also illustrates the difficulties in determining
analytically the values of thresholds for general, more realistic social networks such as the ones used in the
current study.

2.3 Reproduction and selection within demes

Each period within a generation, the payoffs of each individual in a deme are determined by the payoffs in
the game in Table A. For example, consider a period in which a deme is at technology level τ . Consider an
individual within that deme who is playing ‘new’ and has three neighbours playing ‘new’ and two neighbours
playing ‘old’. The payoff of this individual will be 3ατ/5, his average payoff across all of his neighbours.
The fitness of the individual in a given generation is the sum of these payoffs across every period in the
generation. A fitness vector is constructed in which the fitness of individual i, 1 ≤ i ≤ n within the deme
is the ith entry in the vector. The vector is normalized so that it is a unit vector. Then the value in the
ith element of the vector gives the probability with which any given child born into the next generation
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will be the offspring of individual i. To illustrate, assume we have a fitness vector (p1, p2, . . . , pn). Then,
any given individual born into the next generation will, independently, be the offspring of individual i with
probability pi. With probability 1 − µ, the offspring of individual i will have the same type, SI or N , as
individual i. However, with probability µ any given offspring will undergo a mutation and be the opposite
type to her parent. In this manner, all n positions in the deme for the subsequent generation are filled.

Note that the replication here is nothing more than a discretized version of the replicator dynamic.
Naturally, in the finite setting, there are some differences to the continuous population replicator dynamic.
The clearest difference is that even without considering selection or mutation, when starting from any
mixed population, the randomness in reproduction, genetic drift, can eliminate either of the types from
the population. Genetic drift assists in creating variation in the proportions of types within demes, so that
higher level selection between demes can then take place.

ατ should be understood as the within-deme relative fitness benefit of using technology τ + 1 rather
than technology τ . Payoffs and fitness within demes depend directly on α. Unlike the model of Bowles
(2006), we do not assume the presence of an egalitarian food sharing norm. Such a norm, if it did exist,
would enter our model through weaker within-deme selective pressure. Our simulations show that selective
pressure within demes acts in favour of SI (Figure G). This effect would be weaker if egalitarian norms
existed.

2.4 Deme extinction and survival

Each generation, any given deme, with probability η, faces an invader who is one of the other demes drawn
at random. If the incumbent deme has higher technology than the invader, then nothing changes. If the
invader has higher technology than the incumbent, then the incumbent deme is eliminated and its place is
taken by a replica of the invading deme (same number of SI and N types, same technology level, same
payoffs). If the incumbent and the invader have the same technology level, then the incumbent is replaced
with probability one half.

Note that α affects inter-demic contests only indirectly through its effect on technology adoption. It is
possible to set up the model differently, so that rather than old and new technologies giving payoffs of 1
and ατ respectively, they give payoffs of ατ and ατ+1, with higher values of τ associated with higher values
of ατ . Group fitness can then be made to depend on cumulative fitnesses of individuals in the deme. Test
simulations indicated that this approach gives similar results to our chosen approach, but is significantly
more computationally demanding.

We examine η = 0.05, 0.10, 0.20, with the middle value being our benchmark value. This value,
η = 0.10, corresponds to a deme extinction rate of approximately η/2 = 0.05 per generation. This is less
than the benchmark rate of 0.075 used in Bowles (2006). That is, the benchmark rates of ‘conflict’ used
in the current study are lower than those used in the most comparable existing study. Furthermore, our
results are robust to lower and higher conflict probabilities. We refer the interested reader to the Supporting
Online Material to Bowles (2006) for arguments and references in support of such rates of conflict. Key
citations therein include Frayer and Martin (2014); Hill and Hurtado (1996); Keeley (1996); Kelly (2000).

Importantly, unlike Bowles (2006); Choi and Bowles (2007), where a higher prevalence of altruistic
types is assumed to lead to greater success in conflict, the type of individuals (SI or N) in the current
study has no direct effect on probabilities of deme extinction or duplication. We do not, in the words of
Sterelny (2014), ‘lump the civic and the military virtues’. This means that, although the deme extinction
and replacement events of the current study can be understood as the outcome of conflict, they can also
be understood as representing the outcome of bloodless competition over land or resources in which higher
technology gives an advantage, or simply higher survival (conversely, extinction) rates for demes with higher
(conversely, lower) technology.

2.5 Deme extinction: examples

In Figure B and C we provide example visualisations of inter-deme contests resulting in deme extinction
and the type evolution of the population at the conclusion of each of three generations. (Note, other
contests, not shown, may have occured resulting in the survival of the incumbent.)
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Figure B: Example deme extinction and type evolution visualisation at benchmark parameter
settings and α = 1.2 (single replicate). Each disc represents a single deme, 64 demes in all, and is
coloured according to the fraction of SI (or N) types within it (see Legend for scheme). Discs are positioned
according to the technology level obtained by the at the conlusion of the generation. There is no significance
to the height-positioning of demes. Material deme-deme conflict events are labelled (A,B, . . . ) and indicate
the invaded deme (×) and its replacement (enclosed). The outcome of the deme-deme conflict stage is
visualised at the conclusion of, a: generation 20, b: generation 40, and c: generation 80.
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Determinant Range
Number of demes m 64
Effective deme size (one-third of census size) n 32
Average number of neighbours per individual d 4,6, 8
Within-deme fitness benefits of new technology α 1.2− 4.0
Periods per generation T 2000
Maximum coalition size for strategy updating k 2, 3, 4
Mistake rate in strategy updating ε 0.025,0.05, 0.10
Mutation rate from SI to N and vice versa µ 0.001
Per generation conflict probability η 0.05,0.10, 0.20

Table B: Parameter estimates. Benchmark values are in bold.

In Figure B the low-α regime is visualised. At the conclusion of generation 20 (Figure B a), four inter-
deme contests are material, the demes being successfully invaded are indicated by the × symbol and the
new, daughter, demes have been added to the top of the ‘stack’, and are encircled. In this case, since the
new demes and the invaded demes exist at the same ‘old’ technology level for all contests A,B,C,D, the
outcome of the contests have been decided by an equiprobable, random, choice as competing technologies
would have been equal in all cases. At the conclusion of generation 20 we can also see several demes
obtaining higher technology step levels of 2 and 3.

By generation 40 (Figure B b) a larger diversity of deme technology is apparent, with a degree of
type-based superiority being established: only high N type fraction demes exist at technology step 4. Two
material contests are apparent (A and B), both contests having been decided by technological superiority:
both invaded demes sat at technology step 1 whilst the invading demes had advanced to technology step
3. Thus, the daughter demes, replacing the invaded demes, are created at technology step 3, a key part of
the dynamics of technology and types in our model.

By generation 80 (Figure B c) almost all demes are dominated by N type individuals. Material inter-
deme competition between technologically unbalanced demes is still possible (as evidenced by event A)
but such events, likely between demes of similar SI or N type fraction, will not result in material changes
to the overall population fraction of SI or N types.

Hence, in these three ‘frames’, we can see the emergence of technologically superior, N type dominated
demes, which, over time, via inter-deme contests, ultimately greatly reduce the number of SI types in the
population. Any emergence of SI types in a given deme due to drift, will be short-lived, as for α less than
the threshold value for these parameters, demes with high numbers of SI types suffer from the conservative
effect of shared intentions (k > 1) and will eventually fall behind the technology frontier.

In Figure C an above threshold scenario is visualised, with benchmark conditions and α = 2.2 used.
Again, we visualise a single replicate at generations 20, 40 and 80. In this case, generation 20 (Figure C
a) reveals a wider range of technology in use across the demes owing to the higher rate of new technology
adoption implicit in the higher α value. Nevertheless, already at the conclusion of generation 20 it can be
seen that the incidence of demes dominated by N types is low, with higher technology steps more likely
to be occupied by demes with mid to high numbers of SI types, leading, over time, to the eradication of
demes with high numbers of N types.

By generation 40 (Figure C b), the dominance of SI types is entrenched, with the few remaining demes
with high numbers of N types soon to be eradicated. By generation 80 (Figure C c) demes with few SI
types are non-existent, with any remaining variation in type due to mutation and genetic drift.3

3 Choice of benchmark parameters

Here we explain the reasoning behind our choice of benchmark parameters. Our choice of m = 64 is both
computationally manageable and also similar to the typical number of tribes found in a single Aboriginal
language zone as determined by the Australian Institute of Aboriginal and Torres Strait Islander Studies
(AIATSIS). Data from the AUSTLANG project (http://austlang.aiatsis.gov.au/main.php) shows

3It is interesting to note that the idea that differing speeds of norm adoption can lead to inter-demic selection implies
that existing studies of the effects of different network configurations on the speed of norm adoption Centola and Baronchelli
(2015); Kreindler and Young (2014); Montanari and Saberi (2010); Young (2011) could be used to further study the evolution
of the human proclivity to form specific types of social networks.

http://austlang.aiatsis.gov.au/main.php
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Figure C: Example deme extinction and type evolution visualisation at benchmark parameter
settings and α = 2.2 (single replicate). See caption to Figure B for details. Note: technology level
scales are not consistent across panels.
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that of 12 linguistic zones, 9 are listed as having a number of languages and dialects in the range 45-103.
Our choice of n = 32 is similar to that in Bowles (2006) and is an estimate of the number of individuals
who are able to breed in any given generation, that is approximately one third of census size. In addition,
our choice is informed by the survey of Hill et al. (2011), who analysed 32 modern hunter-gatherer societies
(total 5,067 individuals) and found that mean ‘band’ (adult members of a residential unit) was 28.2 (range
5.8 to 81.6).

d, which determines the number of edges in our scale-free graphs, as discussed in Section 4, was
constrained by the computing power at our disposal, although it seems intuitively plausible that most
individuals will be predominantly influenced by relatively few others (friends, family, hunting partners).

α is the focus of our treatments and is examined across a range of values that lead to both the evolution
and non-evolution of SI.

Our choice of T = 2000 assumes that updating of actions is relatively rare, with the opportunity for
some set of individuals to update arising every 3-4 days. We could have used larger values of T . What
this would do is to exaggerate the technological differences between demes who are gaining technology fast
and those who are gaining it slowly, increasing the selective effect at the inter-demic level.

We focus on small values of k because we wish to examine the evolution of collaboration and it is likely
that the ability of pairs or small groups to share intentions would have to evolve prior to the ability of large
groups to do likewise. Tomasello (2014) regards pairwise sharing of intentions as a special case as it only
requires consideration of the first and second person (me and you) and not the third person (him). We
agree with this reasoning and choose to make k = 2 our benchmark maximum coalition size.

The benchmark choice of ε = 0.05 was relatively arbitrary and corresponds to a mistake rate of one in
twenty.

The mutation rate of µ = 0.001 is high, but still only corresponds to an average of two mutations
occuring in the metapopulation every generation. Working with lower mutation rates slows down initial
waiting times until homogeneous populations become heterogeneous, but does not change the dynamics
which occur thereafter, which is the object of interest in the current study.

Finally, the conflict probability η was chosen to be less than previous estimates. That is, we do not
require unreasonably strong deme-level selection to get our results. This is further discussed in Section 2.4.

4 Social networks

4.1 Network type & Characteristics

Social networks play two important roles in the study. First, in each period individuals undertake pair-
wise productive activities with their neighbours, the product of their labours being determined by the
coordination game in Table A. Second, up to k-vertex, connected subgraphs of SI types are able to jointly
revise their strategy (see Figure 2 in the main paper). The same network informs both production and
strategy revision. Unique social networks are generated afresh each generation for each deme, are always
single-component and undirected, and are not altered during the generation.

We use ‘scale-free’ (SF) networks having an approximately power-law degree distribution (Barabasi and
Albert, 1999). That is, the probability P (d) of a vertex having d adjacent neighbours decays as a power
law, P (d) ∼ d−γ . These networks are known as SF since for a certain range of γ, the average of the
degree distribution does not converge – there is no ‘characteristic’ or ‘expected’ degree. In comparison
to random networks where the function P (d) decreases exponentially in d, the SF distribution exhibits
so-called ‘fat-tails’: a much higher mass is located at large degrees than is the case with the Gaussian
distribution.

SF networks have been discovered in many social, biological and physical systems (for a review, see
Barabasi, 2009). Whilst it is impossible to identify the network structure of long-gone civilisations, recent,
detailed study of the Hadza hunter-gatherers of Tanzania, a potentially representative Pleistocene-like
culture, has demonstrated remarkable similarities between the social networks displayed within the Hadza
and modern social network characteristics (Apicella et al., 2012). For instance, P (d) was found to differ
significantly from a random network distribution, with fat-tail phenomena present; ties were found to be
strongly reciprocal (e.g. if A nominated B, implying A→ B in g, then with high probability B nominated
A, implying B → A in g, or simply A↔ B in g, note: nominations were private); and, ties were strongly
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assortative – high in-degree vertices nominated more social contacts, whilst vertices with high out-degree
were more likely to be nominated. Together, these features point to SF networks as being a reasonable
analogue.

a b c

Figure D: Example n = 32 scale-free networks used in the study. a: Avg. degree d ' 4, b: d ' 6,
and c: d ' 8.

To build the SF social networks, the Scale-Free Network Generator algorithm (Barabasi and Albert,
1999) was used as implemented in Matlab by George (2007) and freely available online.4 Example SF
social networks of size n = 32 and approximate average degree 4, 6 and 8 are visualised in Figure D.

Table C: Average network characteristics of social networks used in the study. The benchmark case
utilises d ' 6. The final column provides random networks of similar average degree to the benchmark for
comparison.

Measure Scale-free (study) Random
d ' 4 d ' 6 d ' 8 d ' 6

mean s.d. mean s.d mean s.d. mean s.d.

Degree
mean 3.8 (0.094) 5.5 (0.12) 7.6 (0.47) 5.7 (0.12)
min 1.8 (0.43) 3.7 (0.49) 3.8 (0.603) 2.1 (0.81)
max 13.7 (2.4) 16.0 (2.2) 18.4 (2.0) 9.8 (1.1)

Clustering Coefficient 0.28 (0.090) 0.32 (0.061) 0.38 (0.047) 0.17 (0.031)
Characteristic Path Length 2.4 (0.078) 2.1 (0.037) 1.9 (0.044) 2.1 0.034
Diameter 4.3 (0.48) 3.7 (0.47) 3.0 (0.14) 4.0 (0.39)
P (d), power-law exp, γ 2.50 (0.21) 2.65 (0.24) 2.73 (0.25) - -

Replicates 10,000 10,000 10,000 10,000

Common, average charactersitics of the social networks used in the study are given in Table C after
measuring each characteristics over 10,000 replicates of the network generator at each average degree
level.5 The last columns of the table include an equivalent ensemble characterisation of 10,000 random
graphs (built by 100% random rewiring of a regular lattice) at approx. degree 6. Comparison of the the
SF (study) (d ' 6) to the random graph data reveal expected higher clustering (0.32 to 0.17), equivalent
path length (2.1 to 2.1) and diameter (3.7 to 4.0), and much larger average maximal degree (16.0 to 9.8)
in the SF networks over the random graphs.

4See http://bit.ly/1yabAKp .
5Clustering coefficient, characteristic path length and diameter measures utilise the MIT Strategic Engineering lab’s ‘Matlab

Tools for Network Analysis (2006-2011)’ availble at http://bit.ly/1AJrKt3; exponent of the power-law distribution of vertex
degrees follows Clauset et al. (2009) and utilises the accompanying Matlab toolset avaiable at http://bit.ly/1Gu4R0A.

http://bit.ly/1yabAKp
http://bit.ly/1AJrKt3
http://bit.ly/1Gu4R0A


Angus, SD & Newton, J: ‘Emergence of ... ’ - S1 SUPPORTING INFORMATION 13

It is worth noting that whilst we believe the choice of SF social networks to be the most appropriate given
considerations above, our previous work (Newton and Angus, 2013, 2015) demonstrates that conservative
and reforming effects of k > 1 strategic revisions in social networks are observed in a wide range of network
types including regular, ‘small-world’ and random versions of lattice networks, along with five empirical
social networks drawn from a range of contemporary sources (n range 22 to 379).

4.2 Coalition formation

Strategy updating is either individual or proceeds by coalitional strategy updating in which a pair (k = 2)
or more (k > 2) of SI type individuals, who are neighbours in the social network, can share intentions and
develop a coalitional better response. Within each replicate of our study, each social network g|n,d is likely
unique given the vast space of such networks, hence, for each deme, at generation initialisation, after the
social network has been generated, a feasible coalitional database formation algorithm is run. The resultant
database is stored in a specific data-structure which enables fast recall since the strategy updating step is
called once every period (i.e. 128,000 times per generation) with, for example, around 50% of these calls
for k = 2 being coalitional in nature.

For k = 2 the coalitional formation algorithm is straightforward: all edges in g between two SI types
are viable coalitions and are added to the database.

For k = 3 the set of coalitions of size 2, is used as seed-coalitions, each seed-coalition being addressed
in turn, adjacent SI type vertices being identified, and new size 3 coalitions being added to the database if
not present already.

For larger k, the algorithm proceeds iteratively as for k = 3, building up from size 2, then 3, .. and so
on, until the full coalitional set for the given k is found.

Naturally, for low SI fraction demes, the coalition database formation step is very fast. As SI fraction
approaches 1.0, and k � 2 the algorithm can take several seconds, as the number of feasible coalitions
becomes very large. However, for small k the algorithm is very efficient: up to k = 3 coalition formation
with a 100% SI type, n = 32 SF network, plus 10,000 calls to the library takes ∼ 3s on a single core
machine.

Run-time library lookup proceeds first by an equiprobable choice of coalition size up to k. For example
for k = 2, approx. 50% of the time a single individual will be selected for strategy revision, and approx.
50% of the time, a k = 2 coalition will be considered, but only if the starting individual is of SI type. Even
in this case, a 2 member coalition may not be feasible because the SI type starting individual has no SI
type neighbours in g.

Computationally, an alternative approach to pre-construction of the feasible coalitional set for a given
g and k would be to conduct run-time coalition formation, i.e. randomly select some individual, and build
a coalition of up to size k including that individual (if SI type, and having SI neighbours). However,
simulation testing indicated that pre-defining the universe of feasible coalitions of up to size k for a given
g and run-time look-up was around 11 times faster than run-time coalition formation.

5 Additional Experiments: Robustness, the long run & placebo trials

5.1 Robustness

To explore the robustness of the study’s main results to variations in the key parameters a full-factorial
design survey of the convergence properties of the model under low (α = 1.2) and high (α = 4.0) rates
of technological change was conducted. Four parameters were varied over a wide treatment set, given in
Table D, leading to 81 experiments in all (see Table E for details).

In the low α treatments, individuals were randomly assigned to SI or N type with 0.50 probability
at initiation, whereas in the high α treatments, experiments were initiated with a full-N type population,
echoing the approach of the respective studies reported in the main paper. Each experiment was conducted
over 20 unique random seeds (i.e. 1,620 model runs in all).

Since the focus of these experiments was to test whether the dynamics would eradicate, or fully establish,
SI types in the population under low, or high, rates of technological change respectively, each replicate
was stopped, with the generation number recorded, when the convergence criteria was met. Convergence
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Table D: Parameter values surveyed in the robustness study. Benchmark values are underlined.

Parameter Treatment Set
Maximum coalition size for strategy updating k {2, 3, 4}
Average number of neighbours per individual d {4, 6, 8}
Per generation conflict probability η {0.05, 0.10, 0.20}
Mistake rate in strategy updating ε {0.025, 0.05, 0.10}

required more than 75% of the demes (i.e. at least 49 of 64 demes) to each exhibit at least 90% population
fraction of N types (low α treatments) or SI types (high α treatments) respectively at the conclusion of
the generation.

Table E: Type convergence results of 81 full-factorial ro-
bustness experiments. Reported results arise from 20 inde-
pendent random seeds: panel a: 50% SI-type population in-
titial conditions, wait-time for each replicate to reach the ‘no-
SI’ convergence threshold; panel b: 0% SI-type population
initial conditions, wait-time for each replicate to reach the ‘full-
SI’ convergence threshold. Benchmark conditions indicated by
bold-face. ∗ indicates largest wait-time (at k = 2) parameter
combination.

Exp k d η ε Convergence Wait-time (generations)

a b
α = 1.2 α = 4.0

mean s.d. range mean s.d. range

1 2 4 0.05 0.025 81 (18) 41 – 117 86 (10) 65 – 104
2 . . . 0.050 74 (16) 48 – 107 87 (14) 66 – 111
3 . . . 0.100 116 (26) 69 – 164 84 (13) 55 – 109
4 . . 0.10 0.025 55 (10) 41 – 77 56 (7) 47 – 73
5 . . . 0.050 54 (8) 37 – 67 56 (8) 41 – 78
6 . . . 0.100 109 (56) 55 – 291 56 (8) 45 – 78
7 . . 0.20 0.025 48 (14) 26 – 77 38 (7) 28 – 52
8 . . . 0.050 39 (6) 29 – 50 38 (8) 28 – 54
9 . . . 0.100 67 (28) 34 – 128 43 (7) 32 – 55

10 . 6 0.05 0.025 245 (128) 110 – 659 86 (14) 70 – 119
11 . . . 0.050 126 (31) 80 – 196 87 (11) 63 – 114
12 . . . 0.100 88 (17) 64 – 141 82 (7) 68 – 91
13 . . 0.10 0.025 128 (44) 61 – 190 57 (7) 43 – 75
14 . . . 0.050 78 (19) 51 – 122 56 (8) 40 – 71
15 . . . 0.100 63 (16) 35 – 104 63 (9) 45 – 79
16 . . 0.20 0.025 162 (165) 46 – 676 38 (6) 30 – 51
17 . . . 0.050 61 (20) 33 – 97 41 (6) 32 – 55
18 . . . 0.100 51 (16) 26 – 81 45 (11) 34 – 66
19∗ . 8 0.05 0.025 425 (346) 98 – 1309 101 (11) 80 – 121
20 . . . 0.050 148 (47) 86 – 238 99 (16) 74 – 143
21 . . . 0.100 85 (14) 56 – 118 89 (12) 68 – 114
22 . . 0.10 0.025 227 (138) 84 – 532 72 (15) 51 – 106
23 . . . 0.050 101 (38) 44 – 178 62 (12) 46 – 92
24 . . . 0.100 57 (11) 39 – 87 62 (8) 48 – 80
25 . . 0.20 0.025 295 (299) 52 – 1342 54 (20) 40 – 127
26 . . . 0.050 78 (56) 31 – 287 44 (8) 33 – 57

(Table continues over page ...)
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(... Continued from previous page)

Exp k d η ε Convergence Wait-time (generations)

a b
α = 1.2 α = 4.0

mean s.d. range mean s.d. range

27 . . . 0.100 45 (10) 33 – 63 46 (7) 35 – 67
28 3 4 0.05 0.025 75 (15) 51 – 122 76 (10) 63 – 101
29 . . . 0.050 71 (13) 52 – 93 78 (9) 66 – 96
30 . . . 0.100 83 (17) 59 – 122 81 (12) 52 – 106
31 . . 0.10 0.025 54 (7) 43 – 64 53 (8) 37 – 71
32 . . . 0.050 46 (7) 32 – 60 56 (9) 44 – 72
33 . . . 0.100 56 (10) 36 – 77 54 (10) 41 – 80
34 . . 0.20 0.025 39 (9) 24 – 54 34 (8) 25 – 51
35 . . . 0.050 31 (6) 19 – 45 35 (6) 28 – 56
36 . . . 0.100 43 (12) 22 – 71 39 (5) 31 – 49
37 . 6 0.05 0.025 244 (107) 135 – 562 79 (11) 59 – 98
38 . . . 0.050 107 (29) 62 – 163 79 (12) 63 – 102
39 . . . 0.100 79 (15) 57 – 112 84 (11) 68 – 107
40 . . 0.10 0.025 208 (195) 55 – 695 55 (8) 43 – 70
41 . . . 0.050 91 (27) 54 – 135 50 (6) 41 – 62
42 . . . 0.100 59 (12) 36 – 84 54 (9) 40 – 75
43 . . 0.20 0.025 145 (205) 32 – 981 39 (6) 29 – 51
44 . . . 0.050 68 (28) 25 – 150 37 (5) 29 – 52
45 . . . 0.100 43 (10) 27 – 67 35 (6) 28 – 46
46 . 8 0.05 0.025 412 (335) 110 – 1638 89 (18) 63 – 126
47 . . . 0.050 164 (54) 92 – 295 85 (12) 65 – 108
48 . . . 0.100 86 (14) 62 – 121 77 (12) 58 – 101
49 . . 0.10 0.025 241 (219) 67 – 943 64 (16) 46 – 115
50 . . . 0.050 111 (84) 50 – 423 58 (12) 39 – 97
51 . . . 0.100 58 (10) 44 – 80 52 (7) 39 – 63
52 . . 0.20 0.025 204 (232) 35 – 1099 44 (7) 29 – 54
53 . . . 0.050 65 (27) 34 – 146 42 (6) 33 – 56
54 . . . 0.100 42 (8) 31 – 58 38 (6) 25 – 51
55 4 4 0.05 0.025 72 (15) 56 – 117 79 (8) 56 – 95
56 . . . 0.050 71 (9) 56 – 88 74 (9) 62 – 90
57 . . . 0.100 82 (15) 57 – 108 80 (12) 52 – 95
58 . . 0.10 0.025 46 (8) 30 – 67 51 (8) 42 – 71
59 . . . 0.050 47 (11) 30 – 76 50 (7) 40 – 64
60 . . . 0.100 49 (8) 36 – 70 52 (6) 40 – 64
61 . . 0.20 0.025 34 (5) 27 – 46 37 (8) 25 – 53
62 . . . 0.050 35 (7) 24 – 53 35 (5) 28 – 48
63 . . . 0.100 39 (13) 27 – 72 36 (7) 28 – 53
64 . 6 0.05 0.025 181 (70) 75 – 360 81 (12) 50 – 95
65 . . . 0.050 133 (37) 84 – 205 78 (12) 51 – 100
66 . . . 0.100 82 (15) 58 – 108 77 (10) 57 – 94
67 . . 0.10 0.025 123 (48) 58 – 197 53 (7) 40 – 68
68 . . . 0.050 80 (32) 47 – 177 49 (10) 36 – 72
69 . . . 0.100 54 (9) 41 – 78 55 (9) 39 – 77
70 . . 0.20 0.025 133 (136) 51 – 518 36 (6) 26 – 47
71 . . . 0.050 55 (20) 32 – 95 36 (8) 24 – 55
72 . . . 0.100 41 (11) 24 – 78 33 (5) 24 – 46
73 . 8 0.05 0.025 393 (253) 143 – 1270 84 (12) 69 – 118
74 . . . 0.050 162 (88) 84 – 448 80 (13) 65 – 105

(Table continues over page ...)
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(... Continued from previous page)

Exp k d η ε Convergence Wait-time (generations)

a b
α = 1.2 α = 4.0

mean s.d. range mean s.d. range

75 . . . 0.100 82 (18) 51 – 122 76 (11) 59 – 103
76 . . 0.10 0.025 309 (212) 61 – 690 61 (11) 44 – 85
77 . . . 0.050 107 (45) 49 – 202 58 (10) 41 – 76
78 . . . 0.100 62 (14) 42 – 89 52 (7) 42 – 64
79 . . 0.20 0.025 298 (323) 43 – 1187 43 (12) 30 – 83
80 . . . 0.050 86 (69) 36 – 320 41 (9) 32 – 72
81 . . . 0.100 43 (9) 28 – 58 37 (6) 30 – 49

Convergence times (in generations) are given (mean, s.d., and range of 20 replicates) for all 81 treat-
ments across both the low and high α settings in Table E. No replicate at any combination of parameters
within the variable ranges specified failed to converge as defined within 2000 generations, with most repli-
cates much faster.

5.2 The long run

Figure 4 in the main paper illustrates the mean final SI type population fraction after 500 generations across
a range of α values with the system initialised to equiprobable SI or N type, at the benchmark parameter
settings.

In Figure E, we repeat these simulations but allow them to run for a further 1,500 generations (i.e.
to generation 2,000) to demonstrate the stability of the N and SI type regime under α of 1.2 and 2.2
respectively, which lie either side of the phase-transition point. To demonstrate the speed of SI type
dominance under technology conditions above the transition point, the α = 2.2 experiment (panel b in
Figure E) was initiated with the SI type absent from all demes.
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Figure E: The stability of the N and SI type regimes for the benchmark case. Red lines give the
average population fraction (across all demes) of SI types for a single replicate (10 replicates are shown
in all). Solid black line indicates the median of all replicates. In both panels, the benchmark parameter
conditions are used. a: α = 1.2 and initiation with equiprobable SI or N types across all demes, b: α = 2.2
and initiation with SI types absent from all demes.
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In Figure F we present long-run simulations of the slowest parameter combination identified in the
robustness experiments for k = 2, namely, the {d = 8, η = 0.05, ε = 0.025} experiment (refer Exp 19 in
Table E). As with the robustness experiments, initiation saw 50% and 0% SI types in the starting population
for the low (α = 1.2) and high (α = 4.0) regimes respectively.

Since very low conflict and strategy updating mistake-rate probabilities in the low α experiment give
rise to very mild population selection dynamics, we run 40 replicates at the low α regime and present, in
Figure F panel a, the 25th-75th percentile range, along with the median, across all replicates for clarity.
We find that even under such weak population selection dynamics as given in this experiment, the N and
SI type regimes are nevertheless remarkably stable over the long run within the low and high technology
gradient respectively.

Given that the full-factorial robustness exercise demonstrated that all other parameter combinations
imply stronger selection dynamics than this treatment (shorter wait-times), it would seem that the predic-
tions of the N and SI type outcomes under low and high values of α respectively are robust to specific
choices of the parameters within the wide ranges tested.
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Figure F: The stability of the N and SI type regimes under the longest wait-time parameter
combination. Average SI type fraction each generation across all demes from multiple replicates at the
slowest wait-time parameter combination for k = 2 (d = 8, η = 0.05, ε = 0.025, refer Exp 19 in Table E).
Dashed vertical lines in each panel give the mean convergence wait type (as reported in the table). a:
The median (black line) and 25th to 75th percentile range (grey area) from 40 replicates is shown; b: The
median (black line) and individual replicates (red line, 10 in all).

5.3 Placebo Trials

Here we report the results of placebo experiments to complement our main results. Placebo experiments
serve two purposes: first, they provide one of the methods of model validation; and second, they provide
information on the key drivers of the main results of a given model. We conduct placebo experiments
under the benchmark parameter settings, for a below and above threshold α value over 500 generations,
shadowing the trials reported in Figure 4 of the main study.

The two key stages of the model we enrol in the placebo experiments are the group and individual
selection stages, represented by the deme-deme conflict, and reproduction stages respectively (refer Figure 1
of the main paper). Deme-deme conflict was switched ‘on’ or ‘off’ simply by entering the deme-deme conflict
module or skipping it respectively. Alternatively, reproduction was switched from replicator dynamics (RD)
as used in the study (‘on’), to uniform probabilistic selection in the placebo ‘off’ setting.
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Figure G: Placebo results at benchmark conditions and α ∈ 1.6, 2.2 to complement Figure 4 in
the main study. Results obtained for SI population fraction (top panel) and Technology Rate (bottom
panel) as per Figure 4 in the main study (i.e. mean results reported from generations 451 to 500 over 10
replicates). Placebo trials a, b, d and e skipped the Deme Extinction stage, while it was retained in c and
f. Uniform probabilistic, rather than RD, reproduction was used in a, c, d and f.
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In Figure G (left) we report the placebo results of a below-threshold treatment (α = 1.6), complement-
ing Figure 4 (Phase I) in the main study. As can be seen in the figure, both placebo trials where deme-deme
conflict was skipped obtained no SI or N type dominance across the population, irrespective of the use of
uniform probabilistic or RD reproduction (Figure G a and b). Whereas, when the Deme Extinction stage
was used as per the main study (c), without RD reproduction, the study results were recovered.

In Figure G (right) we report the placebo results of an above-threshold treatment (α = 2.2), comple-
menting Figure 4 (Phase II) in the main study. Here, it is apparent that SI types can predominate in the
metapopulation even without inter-demic selection. However, this dominance is further strengthened by
inter-demic selection.

Next, we explore the robustness of the model’s main results to two additional manipulations: i) inter-
demic migration; and ii) less than 100% replacement of members of an invaded deme by replicas of members
of a succesfully invading deme.

5.4 Migration

Amongst studies which explore the emergence of individual behavioural traits and include selection at
an inter-demic level, migration between demes is sometimes considered. A recent survey of eight such
papers finds that three of them consider migration but five do not (Table S1, Rusch, 2014). Migration of
individuals amongst demes is of interest since any process which leads to the accumulation of substantial
inter-demic diversity will be tempered or extinguished completely by inter-demic mixing (Bowles, 2006).

Migration is not part of our benchmark model. To explore the influence that migration might have, we
add a random migration stage to the benchmark model. This takes place after the reproduction stage and
prior to the next generation (refer Fig. 1 of the main paper). A single migration event was implemented
as follows:

1. Choose two different demes at random, A and B;

2. Choose at random, individual i from deme A, and individual j from deme B;

3. Move individual i to deme B and individual j to deme A. Note that this only has an effect if i and
j are of different types, in which case it is equivalent to changing the type of a chosen individual in
each deme.

Since the migration process occurs at the end of each generation, no complications arise from within-
generational concerns such as payoffs and social networks. At the beginning of the next generation, no
distinction is made between new immigrants and the rest of the individuals in a deme.

We conduct experiments where 1/2Mmn migration events occur each generation. M is a new parame-
ter, the migration probability, and m, n are the number of demes and the number of individuals per deme
as per the benchmark model. Note that the migration process is necessarily neutral with regards to deme
size, and as such, causes the movement of two individuals (not one) per migration event. Consequently,
to allow for comparison with related studies, we add the 1/2 multiplier to obtain the number of migration
events per generation.

In Figs. H & I we present the results of the benchmark model with migration added at low- and high-
values of α. We provide in each figure the benchmark results for comparison. Selection against SI for low
α holds for M up to 2.5% and breaks down for M ≥ 5%, which is approximately equivalent to full mixing
every twenty generations (Fig. H). For the high α case, selection for SI withstands any level of migration
considered (Fig. I).

The level of migration under which selection against SI types is retained (for low α) is not dissimilar
to similar thresholds in related work. For example, in the study of Garćıa and van den Bergh (2011),
where the benchmark scenario has no migration, a migration rate of 5% requires a dramatic increase in
the benefit/cost ratio of the studied social dilemma game to ensure that ‘altruists’ are selected for.

5.5 ‘Brutality’ in conflict and replacement

In the benchmark model, if a deme goes extinct it is replaced by a replica of the (usually higher technology)
‘invading’ deme. This can be thought of as the higher technology deme ‘winning’ a conflict scenario and
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Figure H: Robustness of selection against SI to migration at low alpha (α = 1.6). Results of a: SI
population fraction; and b: technology rate over all 64 demes, 5 replicates and generations 451-500 mirror
those of Fig. 4 in the main paper at benchmark conditions however with the migration module ‘on’ and
migration probability M explored over five treatments as given (1% .. 25%). Benchmark (BM) results (no
migration) given at left for comparison.
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Figure I: Robustness of selection for SI to migration at high alpha (α = 2.2). See caption to Fig. H
for details.
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effecting a policy of 100% ‘brutality’ on the loser (resulting in the complete replacement of the losing deme
by the winning deme); or, one can think of the higher technology deme undergoing a fissioning process
(resulting in the complete ‘displacement’ of the lower technology deme due to superior rates of productivity
and associated fecundity).

Either interpretation is appropriate for our study, as the type of individuals only effects inter-demic
selection indirectly through technological advance (see Section 2.4 for further discussion). Nevertheless,
amongst related studies which consider a ‘conflict’ interpretation of inter-demic interaction, the fraction of
the losing deme which is replaced by the winning deme – the level of ‘brutality’ – is sometimes varied away
from 100%.

Of the six relevant studies considered in Table S1 of Rusch (2014), only that of Choi and Bowles (2007)
departs from 100% brutality. In the cited work, brutality is determined endogenously as a function of the
relative strengths of the conflicting demes, with resultant average levels of brutality as high as 40% reported
for some equilibrium states. In transient states, brutality levels of 0% to 100% are employed. However,
comparison is not straightforward due to the far more elaborate deme-deme interaction scenario employed
in the cited work (see Section 7 of the Supplementary Online Content of the cited paper for details).

In the spirit of Choi and Bowles (2007) we implement a less-than-unity ‘brutality’ experiment which
respects the relative ‘strengths’ (technology steps) of the demes. Let the degree of replacement of the
population of successfully invaded demes be given by β. We introduce parameter a to vary the level of β
which applies when a deme is successfully invaded by another deme which has a technology level δ steps
higher.

β(a, δ) = 1− 0.5aδ+1 . (2)

In our benchmark setup, since a successfully invaded deme is replaced by a duplicate of the invading deme,
all individual and group characteristics are copied over, including the technology step of the invading deme.
In keeping with this approach, we set a floor of 50% on β, such that the new deme is populated with at
least 50% of the individuals from the invading deme, with the remainder of the individuals coming from the
invaded deme. This majority of individuals from the invading deme bring with them the invading deme’s
level of technology.

After every successful invasion, β is computed via (2), and a number (βn to the nearest integer) of
individuals from the invading deme is chosen to replace the same number of randomly chosen individuals
in the invaded deme. In both cases, random selection is conducted without replacement.

We note that this approach to brutality/displacement is inherently stochastic. Particularly, early in any
given simulation the difference in the share of SI or N types between two demes is likely to be small,
meaning that random selection is not at all guaranteed to lead to an increase in the type of individual that
is represented in greater numbers by the invading deme. In this sense, whilst our floor of 50% brutality may
appear high, the untargeted, stochastic, nature of selection implies a much weaker form of transmission
from ‘winner’ to ‘loser’. Further note that although we test reduced brutality/displacement, we do not
correspondingly increase the probability η of such events occurring. That is, the rate of replacement of
individuals by invaders during the Deme Extinction stage drops below its benchmark value of η/2 = 5%.

Example evaluations of (2) are given in Fig. J. The specification implies that the brutality/displacement
experienced by an invaded deme will be greater the more it lags behind the technology step of the invading
deme. Parameter a enables control over the responsiveness of β to the difference in technology step, δ.
Early in a simulation run it will typically be the case that δ = 0 since demes start level in technology.
Consequently, the level of displacement is set to the 50/50 floor. As the simulation progresses, technology
differences may emerge, leading to δ > 0 and consequently increasing β (when a > 0).

Again, the benchmark model was evaluated at the low- and high- α scenarios with a range of parameter
values for a ∈ 0.0, . . . , 2.0. Figures K and L give the results of each scenario respectively. Selection against
SI at low α is returned for a range of treatments up to a ≤ 0.25, whilst in the high α there is selection for
SI for the full range of a explored.

To understand in more detail the way that (2) applies within the low α regime, we provide, in Fig. M,
density plots of realised β for early and late generations across each treatment where a > 0. As expected,
early in the simulation (a, top panel) a non-zero fraction of β realisations are at the β = 0.5 or 50/50
brutality/displacement level due to interacting demes having equal technology. However, as the simulation
progresses (b, bottom panel), inter-demic differences in technology become the norm, with β densities
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Figure J: Example evaluations of ‘brutality’ equation (2). In the benchmark experiments, β is set to
a constant of unity.
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Figure K: Robustness of selection against SI to ‘brutality’ < 100% at low alpha (α = 1.6). Results
of a: SI population fraction; and b: technology rate over all 64 demes, 5 replicates and generations 451-500
mirror those of Fig. 4 in the main paper at benchmark conditions however with β (‘brutality’) varied away
from 100% by parameter a as indicated. Below the figure, average values of β are given over either the
first-, or last-, 50 generations of the simulation run for a > 0. Benchmark results (β = 1.00) given at left
for comparison.
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Figure L: Robustness of selection for SI to ‘brutality’ < 100% at high alpha (α = 2.2). See caption
to Fig. K for details.
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shifted to higher values. Note that even the a = 0.5 treatment, where the benchmark result for low α
is retained, β values are drawn from a wide support on the unit interval, away from unity, even late in
the simulation. Hence, we conclude that the model’s main result in this regime is robust to considerable
variance in the displacment level applied.

6 Numerical simulation

The model was implemented in the Matlab programming language and run using one of three versions:
R2013b, R2014a or R2014b as the project developed. The software were developed by the authors specif-
ically for the project and all visualisations and data analysis was likewise conducted within the Matlab
environment. In addition to the main Matlab primitive toolsets, the parallel and statistics toolboxes
were used to parallelise computations (see below) and to conduct fitness-biased selection of parents during
RD or uniform intra-deme reproduction. Post-processing of figures was achieved with OmniGraffle.

All simulations were conducted using the parallel toolbox with 8 to 24 threads on one of two
MacPro platforms (2010 or 2014 models). Parallelisation took place at the level of demes, i.e. sending
a random selection of deme computations to be run in parallel for one generation. Any calling instance of
Matlab was run without graphical-user-interface from the Mac OS X Terminal or X11 xterm, typically
over ssh.

Random number control was achieved by initiating each replicate with the replicate number as the seed
to the Matlab stream method mt199937ar (Mersenne Twister with Mersenne prime 2199937−1). Stream
initialisation ensured that any given replicate had identical, and reproducible, initial population conditions
(initial individual SI or N type and technology choice, and assignment to a given deme). During generation
initialisation, the network generator algorithm updated the stream with a unique, system clock-based seed,
prior to network generation to ensure that our results did not depend in a sharp way on a particular sequence
of networks being chosen from the vast global network space.

As an indication of run-times, utilising the 2014 MacPro with 12 cores (12 GB RAM, SSD HD), a
generation under benchmark conditions (2,000 periods, 64 demes of 32 individuals) took 4.3s, implying a
single replicate of 500 generations (1 × 106 periods in all) as used, for example, in Figure 4 of the main
paper, took approximately 36 min.
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