Supplementary Information

NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment

Jillian P. Casey^{1,2*}, Svein I. Støve³, Catherine McGorian^{4,5}, Joseph Galvin⁴, Marina Blenski³, Aimee Dunne², Sean Ennis², Francesca Brett⁶, Mary D. King^{7,2}, Thomas Arnesen^{3,8}, Sally Ann Lynch^{1,2,9}

1. Genetics Department, Children's University Hospital, Temple Street, Dublin 1, Ireland.

2. UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.

3. Department of Molecular Biology, University of Bergen, Norway.

4. Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin7, Ireland.

5. School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.

6. Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland.

7. Department of Paediatric Neurology & Clinical Neurophysiology, Temple Street

Children's University Hospital, Dublin 1, Ireland.

8. Department of Surgery, Haukeland University Hospital, Norway.

9. Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.

Gene	Transcript	cDNA alteration	Protein	dbSNP ID	MAF (%)	Implicated	Variant
			alteration			in DD/ID	segregates
SHROOM2	NM_001649.2	c.4274C>T	p.(Ser1425Leu)	rs149373874	0.81	no	-
SHROOM4	NM_020717.3	c.1879C>T	p.(Pro627Ser)	rs150861758	0.29	yes	no
IL13RA1	NM_001560.2	c.597_599delAAC	p.(Gln199del)	novel	-	no	-
ZCCHC12	NM_173798.2	c.722G>C	p.(Arg241Thr)	rs140976011	0.06	yes	no
GPR112	NM_153834.3	c.6217C>A	p.(Pro2073Thr)	rs371661996	0.01	no	-
SPANXD	NM_032417.2	c.220A>G	p.(Lys74Glu)	rs2983592	unknown	no	-
MAGEA4	NM_001011550.1	c.122C>T	p.(Ser41Phe)	rs41302158	0.46	no	-
NAA10	NM_001256120.1	c.128A>C	p.(Tyr43Ser)	novel	-	yes	yes

Table S1. Rare or novel X-specific variants identified by whole exome sequencing in patient III:1.

Variant prioritisation identified eight hemzygous coding variants on the X chromosome of patient III:1 which were novel or had a minor allele frequency (MAF) less than 1% in control databases and Irish controls. Three of the eight genes have previously been implicated in developmental delay (DD) or intellectual disability (ID). Only one of those three remaining candidates segregated with the phenotype in this family.

 Table S2. Whole exome sequencing variant prioritisation strategy

Criteria	Number of Variants
Variants identified	203,992
+ absent or present with a frequency $<1\%$ in	27,486
dbSNP130, NHLBI EVS and 1000G	
+ Nonsense, missense, splice site or indel	1,260
+ X Chromosome	27
+ hemizygous and X-specific	11
+ absent or present with a frequency $<1\%$ in	7
60 Irish control exomes	
+ previously implicated in developmental	3
delay or intellectual disability	
+ segregates with the phenotype	1

Rare or novel hemizygous variants in genes on the X chromosome implicated in developmental delay or intellectual disability were prioritised. Of the three candidate variants, only one variant segregated with the phenotype; a novel missense variant (c.128A>C; p.(Tyr43Ser)) in the *NAA10* gene.

 Table S3. Primer sequences for PCR.

Gene	Exon number	on number Forward primer 5'-3' Reverse primer 5'-3'		Size (bp)	Annealing
					temperature
SHROOM4	Exon 4	CACAGCAGCCACAAAGGG	TGAAGAGCTTGTCTCTGGGG	613	60°
ZCCHC12	Exon 4	CAAACCGGACTCGCTTGCAG	CCTGGGCCTTGTCACTCTCG	597	60°
NAA10	Exon 3	ACTCGTCCAGTTTGTGTCCC	ACAGAGGCATCCACCAGAC	192	60°

PCR primer sequences were designed using the Exon Primer programme available in the UCSC Genome Browser.