Supplementary Information

Production of viable trout offspring derived from frozen whole fish

Seungki Lee^{1,2}, Shinsuke Seki¹, Naoto Katayama¹ & Goro Yoshizaki^{1†}

¹Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan

²Biological and Genetic Resources Assessment Division, National Institute of Biological

Resources, Incheon 404-708, Korea

[†]Correspondence should be addressed to Goro Yoshizaki.

Goro Yoshizaki, Professor

Department of Marine Biosciences, Tokyo University of Marine Science and Technology 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan

Tel: +81-3-5463-0558 Fax: +81-3-5463-0558

Email: goro@kaiyodai.ac.jp

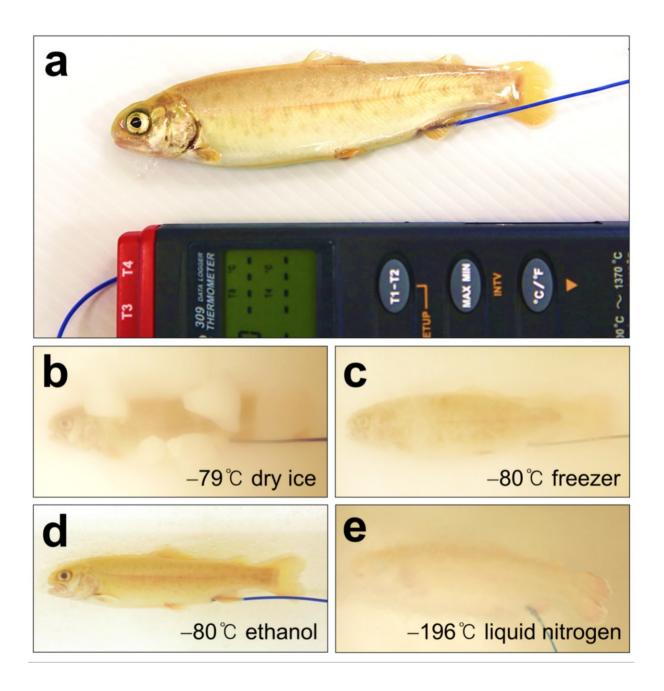
Supplementary Figure Legends

Supplementary Figure 1. Measurement of temperature changes inside whole trout during the cooling process. (**a**) To measure temperature changes in the intraperitoneal cavity during whole fish cooling, thermocouples connected to a digital thermometer were inserted through the anus of orange colored vasa-*Gfp* rainbow trout. (**b–e**) The whole trout fish were cooled in a polystyrene foam box filled with –79°C dry ice (DI) cubes (**b**), a –80°C standard deep freezer (**c**), a polystyrene foam box filled with –80°C ethanol prechilled in a standard deep freezer (**d**), and –196°C liquid nitrogen (**e**). Freezing whole fish in DI or a –80°C freezer can reproduce the slow freezing process. All images were taken by Seungki Lee.

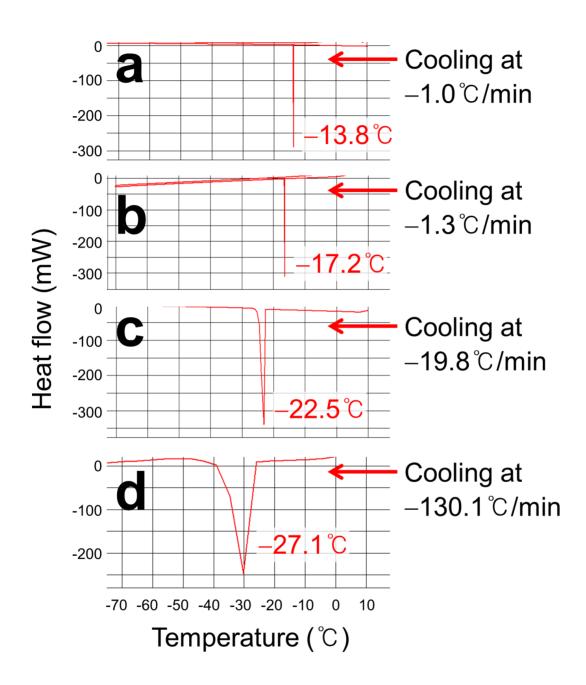
Supplementary Figure 2. Temperature of extracellular ice formation inside of whole trout during cooling process. (a–d) To determine the temperatures of extracellular ice formation (EIF), trout blood samples (3 μl) were subjected to differential scanning calorimetry at scan rates of –1.0°C/min, –1.3°C/min, –19.8°C/min, and –130.1°C/min. EIF occurred at –13.8°C (a), –17.2°C (b), –22.5°C (c), and –27.1°C (d) during cooling in –79°C dry ice, in a –80°C freezer, in –80°C ethanol, and in –196°C liquid nitrogen, respectively.

Supplementary Figure 3. Freezing conditions of whole trout following body weight. (a–d) To examine the effects of frozen whole trout body weight on type A spermatogonia (ASG) survival, orange-colored pvasa-Gfp rainbow trout weighing 0.9 ± 0.1 g at 3-month-old (a), 18.8 ± 1.6 at 10-month-old (b), 101.6 ± 5.7 g at 15-month-old (c), and 203.9 ± 8.0 g at 18-month-old (d) were frozen in a -80° C standard deep freezer for 8, 372, and 735 days (n = 5). (e) No viable ASG were retrieved from whole trout weighing 0.9 g frozen in a freezer for 735 days. (f–h) Testicular cells retrieved from whole trout weighing 18.8 g (f), 101.6 g (g), and 203.9 g (h) frozen in a freezer for

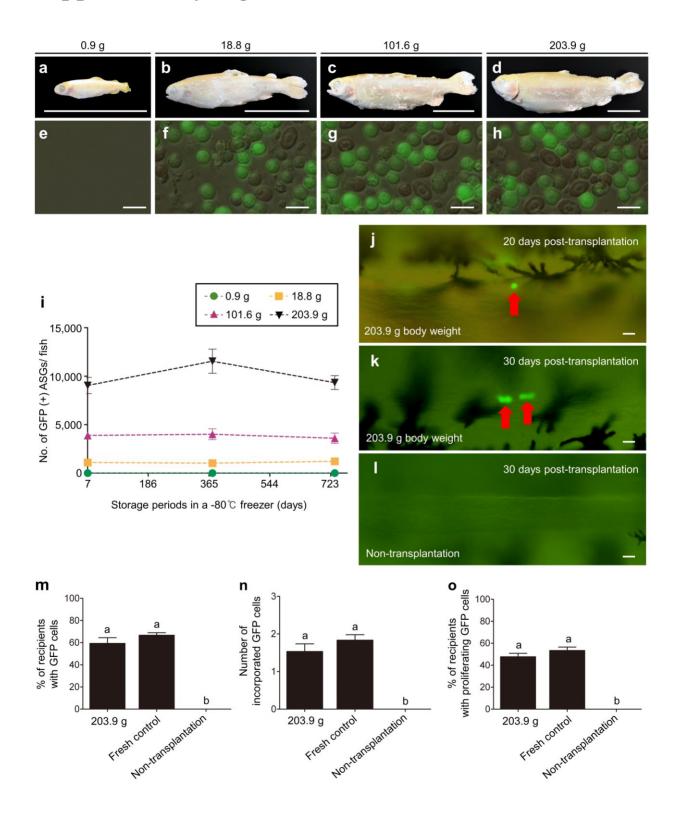
735 days. (i) Viability of ASG retrieved from whole trout weighing 18.8, 101.6, and 203.9 g frozen in a freezer for 8, 372, and 735 days. There were no significant differences in ASG viability among different freezing periods. (n = 4–5). (j) GFP (+) ASG retrieved from 203.9 g frozen whole trout (arrow) were incorporated into the genital ridges of wild-type trout. (k,l) Incorporated ASG (arrows) began to proliferate within the recipient gonads (k) and the gonad of a nontransplanted control (l). (m–o) Percentage of recipients that contained donor ASG within recipient gonads (m), number of ASG incorporated into recipient gonads (n), and percentage of recipients having proliferating donor ASG (o) were not significantly different between 203.9 g frozen trout and fresh control groups (n = 26-33). Data are shown as mean \pm SEM. Scale bars, 5 cm (a–d); 20 µm (e–h, j-l). All images were taken by Seungki Lee.

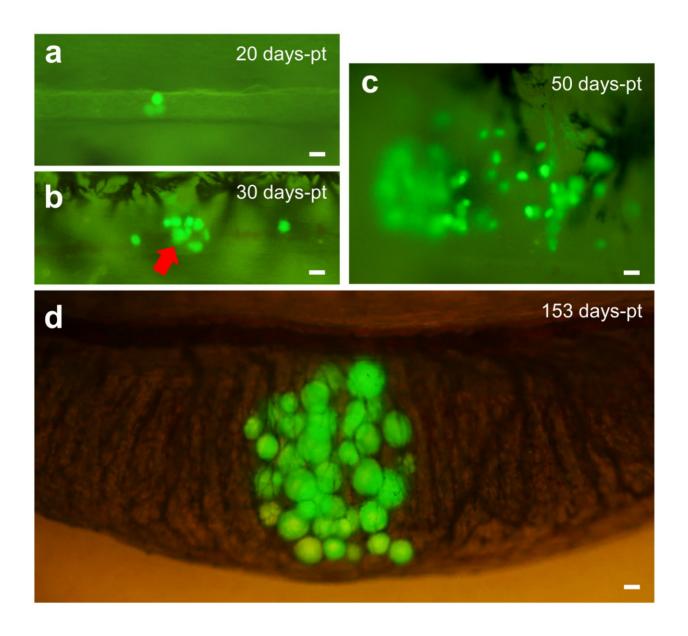

Supplementary Figure 4. Transplantation of testicular cells retrieved from frozen whole trout into salmon recipients. (a) Frozen-thawed trout GFP (+) ASG that were transplanted into salmon recipients migrated toward recipient genital ridges and were subsequently incorporated into them. (b–d) The transplanted donor ASG began to proliferate (arrow in b and c) and differentiate into oocytes in xenogeneic female recipients (d). Scale bars, 20 μm (a–d).

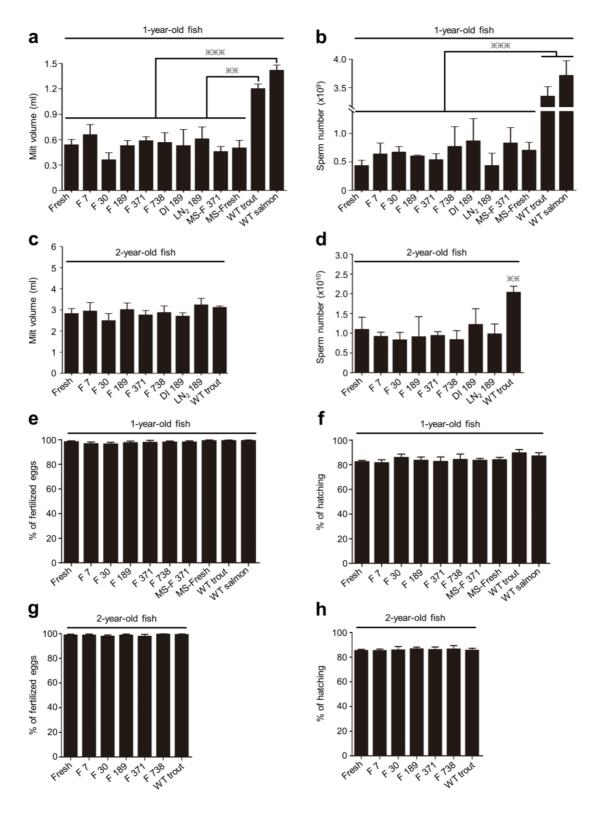
Supplementary Figure 5. Sperm produced by trout (1- and 2-year-old) and salmon (1-year-old) recipients and their developmental performance. (**a,b**) Milt volume (**a**) and sperm number (**b**) produced by recipients with freshly prepared type A spermatogonia (ASG; Fresh and MS-Fresh), recipients that received ASG frozen for 7 (F 7), 30 (F 30), 189 (F 189, dry ice [DI] 189, and liquid nitrogen [LN₂] 189), 371 (F 371 and MS-F 371), and 738 days (F 738), and wild-type fish (WT trout and WT salmon) at 1 year of age (**,***P<0.01). (**c,d**) Milt volume (**c**) and sperm number (**d**) produced by fresh, F 7, F 30, F 189, F 371, F 738, DI 189, LN₂ 189, and WT


trout at 2 years of age (**P < 0.01). (**e,f**) Fertilization rates (**e**) and hatching rates (**f**) of eggs inseminated with milt obtained from fresh, F 7, F 30, F 189, F 371, F 738, MS-F 371, MS-Fresh, WT trout, and WT salmon at 1 year of age. (**g,h**) Fertilization rates (**g**) and hatching rates (**h**) of eggs inseminated with milt obtained from fresh, F 7, F 30, F 189, F 371, F 738, and WT trout at 2 years of age. Milt obtained from trout recipients at 1 and 2 years of age were inseminated with eggs obtained from WT trout of the same ages. There were no significant differences within each developmental stage. Data are shown as mean \pm SEM (n = number of mature fish within each group).

Supplementary Figure 6. Eggs produced by 2-year-old trout recipients and their developmental performance. (a) Number of eggs produced by recipients of spermatogonia derived from whole trout frozen for 0 (fresh), 7 (F 7), 30 (F 30), 189 (F 189 and liquid nitrogen $[LN_2]$ 189), 371 (F 371), and 738 days (F 738) and wild-type (WT) trout at 2 years of age. There were no significant differences in egg number among recipient groups, excluding WT trout (**P < 0.01). (b) Diameter of eggs obtained from fresh, F 7, F 30, F 189, F 371, F 738, LN₂ 189, and WT trout at ages 2 years of age. (c,d) Fertilization rates (c) and hatching rates (d) of eggs derived from fresh, F 7, F 30, F 189, F 371, F 738, and WT trout at age 2 years of age. Eggs obtained from female recipients were inseminated with milt obtained from WT trout. (e-h) Approximately 50% of the embryos produced by mating between 2-year-old F 738 females and 2-year-old WT trout males displayed orange body color (dashed circles in e) and GFP-positive germ cells (arrowheads in f), suggesting that all F1 offspring were donor-derived. Embryos of WT trout as controls for e (g) and f (h). Data are shown as mean \pm SEM (n = number of mature fish within each group). Scale bars, 5 mm (e,g). All images were taken by Seungki Lee.


Supplementary Figure 1 Lee et. al.


Supplementary Figure 2 Lee et. al.


Supplementary Figure 3 Lee et. al.

Supplementary Figure 4 Lee et. al.

Supplementary Figure 5 Lee et. al.

Supplementary Figure 6 Lee et. al.

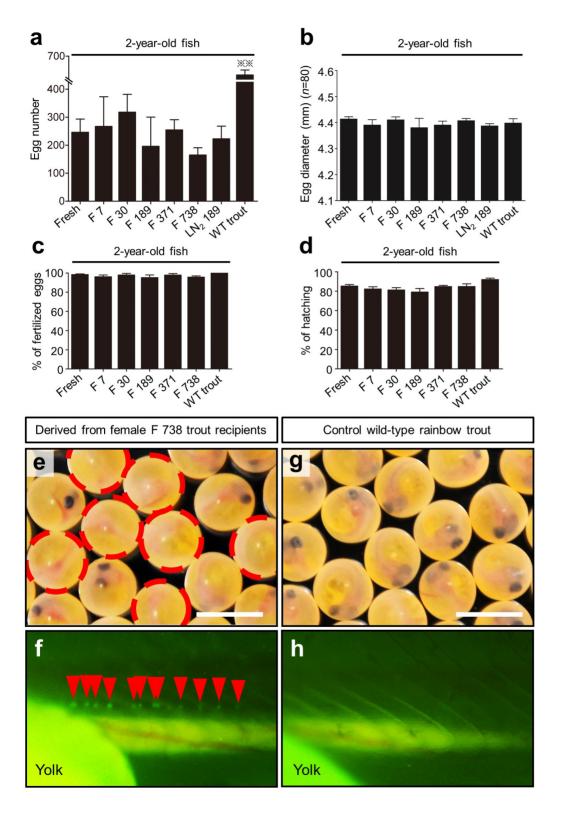


Table S1. Appearance rate of donor-derived haplotypes among F1 generation of male recipients and sex ratio in F1 offspring

Group	Male recipient	Age (year)	No. of fish analyzed	Orange-colored (%)	GFP positive (%)	Male (%)	Female (%)
Fresh ^a	#1	1	141	74 (52.5)	69 (48.9)	62 (44.0)	79 (56.0)
		2	192	91 (47.4)	102 (53.1)	97 (50.5)	95 (49.5)
	#2	1	74	34 (45.9)	43 (58.1)	38 (51.4)	36 (48.6)
		2	162	75 (46.3)	80 (49.4)	77 (47.5)	85 (52.5)
	#3	1	136	60 (44.1)	75 (55.1)	58 (42.6)	78 (57.4)
		2	208	109 (52.4)	98 (47.1)	98 (47.1)	110 (52.9)
	#4	1	90	32 (35.6)	51 (56.7)	45 (50.0)	45 (50.0)
		2	210	114 (54.3)	109 (51.9)	106 (50.5)	104 (49.5)
	#5 ^f	1	93	42 (45.2)	36 (38.7)	44 (47.3)	49 (52.7)
	#6 ^g	2	218	108 (49.5)	119 (54.6)	104 (47.7)	114 (52.3)
	#7 ^g	2	220	99 (45.0)	105 (47.7)	100 (45.5)	120 (54.5)
	#8 ^g	2	207	107 (51.7)	110 (53.1)	101 (48.8)	106 (51.2)
	Mean	1	107	48 (44.7)	55 (51.5)	49 (47.1)	57 (52.9)
		2	202	100 (49.5)	103 (51.0)	98 (48.2)	105 (51.8)
F 7 ^b	#1	1	96	46 (47.9)	47 (49.0)	53 (55.2)	43 (44.8)
		2	219	108 (49.3)	118 (53.9)	104 (47.5)	115 (52.5)
	#2	1	99	49 (49.5)	59 (59.6)	47 (47.5)	52 (52.5)
		2	215	94 (43.7)	103 (47.9)	109 (50.7)	106 (49.3)
	#3	1	104	43 (41.3)	46 (44.2)	55 (52.9)	49 (47.1)
		2	193	103 (53.4)	95 (49.2)	98 (50.8)	95 (49.2)
	#4	1	87	38 (43.7)	42 (48.3)	45 (51.7)	42 (48.3)
		2	257	126 (49.0)	117 (45.5)	115 (44.7)	142 (55.3)
	#5 ^g	2	252	122 (48.4)	124 (49.2)	119 (47.2)	133 (52.8)
	Mean	1	97	44 (45.6)	49 (50.3)	50 (51.8)	47 (48.2)
		2	227	111 (48.8)	111 (49.1)	109 (48.2)	118 (51.8)
F 30 ^b	#1	1	116	70 (60.3)	57 (49.1)	62 (53.4)	54 (46.6)
		2	210	115 (54.8)	108 (51.4)	101 (48.1)	109 (51.9)
	#2	1	75	34 (45.3)	47 (62.7)	40 (53.3)	35 (46.7)
		2	215	104 (48.4)	109 (50.7)	113 (52.6)	102 (47.4)
	#3	1	108	58 (53.7)	50 (46.3)	55 (50.9)	53 (49.1)
		2	227	107 (47.1)	116 (51.1)	106 (46.7)	121 (53.3)
	#4	1	140	67 (47.9)	60 (42.9)	72 (51.4)	68 (48.6)
		2	253	121 (47.8)	112 (44.3)	110 (43.5)	143 (56.5)
	#5 ^g	2	229	109 (47.6)	105 (45.9)	102 (44.5)	127 (55.5)
	#6 ^g	2	200	105 (52.5)	97 (48.5)	107 (53.5)	93 (46.5)
	#7 ^g	2	239	112 (46.9)	103 (43.1)	117 (49.0)	122 (51.0)
	Mean	1	110	57 (51.8)	54 (50.3)	57 (52.2)	53 (47.8)
		2	225	110 (49.3)	107 (47.9)	108 (48.3)	117 (51.7)

Table S1. Cont.

Group	Male recipient	Age (year)	No. of fish analyzed	Orange-colored (%)	GFP positive (%)	Male (%)	Female (%)
F 189 ^b	#1	1	110	53 (48.2)	46 (41.8)	58 (52.7)	52 (47.3)
		2	214	100 (46.7)	112 (52.3)	101 (47.2)	113 (52.8)
	#2	1	133	63 (47.4)	61 (45.9)	59 (44.4)	74 (55.6)
		2	267	132 (49.4)	147 (55.1)	143 (53.6)	124 (46.4)
	#3 ^g	2	198	84 (42.4)	91 (46.0)	96 (48.5)	102 (51.5)
	#4 ^g	2	221	119 (53.8)	109 (49.3)	98 (44.3)	123 (55.7)
	Mean	1	122	58 (47.8)	54 (43.9)	59 (48.5)	63 (51.5)
		2	225	109 (48.1)	115 (50.7)	110 (48.4)	116 (51.6)
F 371 ^b	#1	1	163	76 (46.6)	86 (52.8)	78 (47.9)	85 (52.1)
		2	228	102 (44.7)	119 (52.2)	110 (48.2)	118 (51.8)
	#2	1	216	100 (46.3)	110 (50.9)	112 (51.9)	104 (48.1)
		2	255	135 (52.9)	121 (47.5)	136 (53.3)	119 (46.7)
	#3	1	74	47 (63.5)	39 (52.7)	29 (39.2)	45 (60.8)
		2	209	104 (49.8)	113 (54.1)	102 (48.8)	107 (51.2)
	#4	1	165	80 (48.5)	76 (46.1)	83 (50.3)	82 (49.7)
		2	232	115 (49.6)	127 (54.7)	131 (56.5)	101 (43.5)
	#5 ^f	1	99	43 (43.4)	49 (49.5)	53 (53.5)	46 (46.5)
	#6 ^g	2	247	119 (48.2)	108 (43.7)	109 (44.1)	138 (55.9)
	#7 ^g	2	200	98 (49.0)	101 (50.5)	106 (53.0)	94 (47.0)
	Mean	1	143	69 (49.7)	72 (50.4)	71 (48.6)	72 (51.4)
		2	229	112 (49.0)	115 (50.5)	116 (50.7)	113 (49.3)
F 738 ^b	#1	1	82	39 (47.6)	43 (52.4)	49 (59.8)	33 (40.2)
		2	200	91 (45.5)	93 (46.5)	110 (55.0)	90 (45.0)
	#2	1	102	43 (42.2)	47 (46.1)	57 (55.9)	45 (44.1)
		2	200	90 (45.0)	99 (49.5)	89 (44.5)	111 (55.5)
	#3	1	127	65 (51.2)	62 (48.8)	61 (48.0)	66 (52.0)
		2	243	110 (45.3)	135 (55.6)	139 (57.2)	104 (42.8)
	#4 ^f	1	105	52 (49.5)	62 (59.0)	54 (51.4)	51 (48.6)
	#6 ^g	2	198	91 (46.0)	98 (49.5)	95 (48.0)	103 (52.0)
	#7 ^g	2	210	107 (51.0)	96 (45.7)	108 (51.4)	102 (48.6)
	Mean	1	104	50 (47.6)	54 (51.6)	55 (53.8)	49 (46.2)
		2	210	98 (46.6)	104 (49.4)	108 (51.2)	102 (48.8)
MS-F 371 ^c	#1	1	83	45 (54.2)	41 (49.4)	47 (56.6)	36 (43.4)
		2	237	108 (45.6)	105 (44.3)	124 (52.3)	113 (47.7)
	#2 ^f	1	69	27 (39.1)	39 (56.5)	44 (63.8)	25 (36.2)
	#3 ^f	1	75	33 (44.0)	34 (45.3)	30 (40.0)	45 (60.0)
	#4 ^g	2	200	102 (51.0)	95 (47.5)	94 (47.0)	106 (53.0)
	#5 ^g	2	285	134 (47.0)	138 (48.4)	156 (54.7)	129 (45.3)
	#6 ^g	2	252	127 (50.4)	136 (54.0)	138 (54.8)	114 (45.2)
	Mean	1	76	35 (45.8)	38 (50.4)	40 (53.5)	35 (46.5)
		2	244	118 (48.5)	119 (48.5)	128 (52.2)	116 (47.8)

Table S1. Cont.

Group	Male recipient	Age (year)	No. of fish analyzed	Orange-colored (%)	GFP positive (%)	Male (%)	Female (%)
MS-Fresh ^d	#1	1	97	41 (42.3)	49 (50.5)	40 (41.2)	57 (58.8)
		2	260	122 (46.9)	120 (46.2)	117 (45.0)	143 (55.0)
	#2	1	158	78 (49.4)	83 (52.5)	80 (50.6)	78 (49.4)
		2	251	118 (47.0)	127 (50.6)	121 (48.2)	130 (51.8)
	#3 ^f	1	100	45 (45.0)	52 (52.0)	55 (55.0)	45 (45.0)
	#4 ^g	2	200	104 (52.0)	92 (46.0)	96 (48.0)	104 (52.0)
	#5 ^g	2	200	95 (47.5)	97 (48.5)	106 (53.0)	94 (47.0)
	Mean	1	118	55 (45.5)	61 (51.7)	58 (49.0)	60 (51.0)
		2	228	110 (47.8)	109 (48.6)	110 (48.6)	118 (51.4)
WT trout ^e	Mean	1	193	0 (0.0)	0 (0.0)	91 (47.2)	102 (52.8)
	Mean	2	186	0 (0.0)	0 (0.0)	101 (54.3)	85 (45.7)
WT salmon ^e	Mean	1	183	0 (0.0)	0 (0.0)	96 (52.5)	87 (47.5)
	Mean	2	201	0 (0.0)	0 (0.0)	94 (46.8)	107 (53.2)

^a Rainbow trout recipients received freshly prepared testicular cells.

^b Rainbow trout recipients received testicular cells retrieved from whole rainbow trout frozen and stored in a freezer for 7, 30, 189, 371, or 738 days.

^c Masu salmon recipients received testicular cells taken from whole rainbow trout frozen and stored in a freezer for 371 days.

^d Masu salmon recipients received freshly prepared testicular cells.

^e Wild-type diploid fish that did not undergo transplantation.

^f Fish dead subsequent to spawning at age of 1 year.

g Fish initially matured at age of 2 years.

Table S2. Appearance rate of donor-derived haplotypes among F1 generation of female recipients and sex ratio in F1 offspring

Group	Female recipient	Age (years)	No. of fish analyzed	Orange-colored (%)	GFP positive (%)	Male (%)	Female (%)
Fresha	#1	2	240	127 (52.9)	116 (48.3)	181 (75.4)	59 (24.6)
		3	352	251 (71.3)	270 (76.7)	263 (74.7)	89 (25.3)
	#2	2	200	96 (48.0)	106 (53.0)	152 (76.0)	48 (24.0)
		3	200	140 (70.0)	154 (77.0)	143 (71.5)	57 (28.5)
	#3	2	150	62 (41.3)	60 (40.0)	120 (80.0)	30 (20.0)
		3	388	289 (74.5)	272 (70.1)	285 (73.5)	103 (26.5)
	#4	2	200	94 (47.0)	98 (49.0)	138 (69.0)	62 (31.0)
		3	300	223 (74.3)	238 (79.3)	212 (70.7)	88 (29.3)
	#5 ^f	2	200	92 (46.0)	95 (47.5)	130 (65.0)	70 (35.0)
	Mean	2	198	94 (47.1)	95 (47.6)	144 (73.1)	54 (26.9)
		3	310	226 (72.5)	234 (75.8)	226 (72.6)	84 (27.4)
F 7 ^b	#1	2	187	90 (48.1)	99 (52.9)	147 (78.6)	40 (21.4)
	#2	2	150	71 (47.3)	78 (52.0)	124 (82.7)	26 (17.3)
	Mean	2	169	81 (47.7)	89 (52.5)	136 (80.6)	33 (19.4)
F 30 ^b	#1	2	200	94 (47.0)	102 (51.0)	142 (71.0)	58 (29.0)
		3	425	317 (74.6)	331 (77.9)	340 (80.0)	85 (20.0)
	#2	2	200	104 (52.0)	95 (47.5)	157 (78.5)	43 (21.5)
		3	400	307 (76.8)	289 (72.3)	295 (73.8)	105 (26.3)
	#3	2	215	95 (44.2)	116 (54.0)	168 (78.1)	47 (21.9)
		3	338	245 (72.5)	250 (74.0)	239 (70.7)	99 (29.3)
	#4 ^f	2	281	138 (49.1)	155 (55.2)	201 (71.5)	80 (28.5)
	#5 ^g	3	400	299 (74.8)	312 (78.0)	281 (70.3)	119 (29.8)
	#6 ^g	3	559	410 (73.3)	433 (77.5)	414 (74.1)	145 (25.9)
	Mean	2	224	108 (48.1)	117 (51.9)	167 (74.8)	57 (25.2)
		3	424	316 (74.4)	323 (75.9)	314 (73.7)	111 (26.3)
F 189 ^b	#1	2	116	54 (46.6)	68 (58.6)	98 (84.5)	18 (15.5)
		3	397	308 (77.6)	280 (70.5)	287 (72.3)	110 (27.7)
	#2	2	200	102 (51.0)	95 (47.5)	145 (72.5)	55 (27.5)
		3	400	288 (72.0)	316 (79.0)	311 (77.8)	89 (22.3)
	#3	2	150	91 (60.7)	73 (48.7)	123 (82.0)	27 (18.0)
		3	400	318 (79.5)	307 (76.8)	316 (79.0)	84 (21.0)
	Mean	2	155	82 (52.7)	79 (51.6)	122 (79.7)	33 (20.3)
		3	399	305 (76.4)	301 (75.4)	305 (76.3)	94 (23.7)

Table S2. Cont.

Group	Female recipient	Age (years)	No. of fish analyzed	Orange-colored (%)	GFP positive (%)	Male (%)	Female (%)
F 371 ^b	#1	2	159	72 (45.3)	89 (56.0)	112 (70.4)	47 (29.6)
	#2	2	171	89 (52.0)	85 (49.7)	122 (71.3)	49 (28.7)
	Mean	2	165	81 (48.7)	87 (52.8)	117 (70.9)	48 (29.1)
F 738 ^b	#1	2	200	92 (46.0)	106 (53.0)	147 (73.5)	53 (26.5)
		3	400	292 (73.0)	318 (79.5)	322 (80.5)	78 (19.5)
	#2	2	200	94 (47.0)	108 (54.0)	155 (77.5)	45 (22.5)
		3	400	285 (71.3)	290 (72.5)	281 (70.2)	119 (29.8)
	#3	2	151	83 (55.0)	80 (53.0)	108 (71.5)	43 (28.5)
		3	576	453 (78.6)	414 (71.9)	427 (74.1)	149 (25.9)
	#4	2	60	26 (43.3)	23 (38.3)	40 (66.7)	20 (33.3)
		3	400	305 (76.3)	325 (81.3)	315 (78.8)	85 (21.2)
	#5	2	41	16 (39.0)	19 (46.3)	23 (56.1)	18 (43.9)
		3	435	347 (79.8)	320 (73.6)	339 (77.9)	96 (22.1)
	#6 ^g	3	400	286 (71.5)	311 (77.8)	323 (80.2)	77 (19.3)
	Mean	2	130	62 (46.1)	67 (48.9)	95 (69.2)	36 (30.8)
		3	435	328 (75.1)	330 (76.1)	335 (77.0)	101 (23.0)
MS-F 371 ^c	#1	2	181	141 (77.9)	130 (71.8)	135 (74.6)	46 (25.4)
	#2	2	82	62 (75.6)	60 (73.2)	67 (81.7)	15 (18.3)
	Mean	2	132	102 (76.8)	95 (72.5)	101 (78.1)	31 (21.9)
MS-Fresh ^d	#1	2	55	37 (67.3)	41 (74.5)	33 (60.0)	22 (40.0)
	#2	2	148	118 (79.7)	104 (70.3)	116 (78.4)	32 (21.6)
	#3	2	183	147 (80.3)	138 (75.4)	141 (77.0)	42 (23.0)
	#4	2	56	29 (51.8)	45 (80.4)	42 (75.0)	14 (25.0)
	Mean	2	111	83 (69.8)	82 (75.1)	83 (72.6)	28 (27.4)
WT trout ^e	Mean	2	241	0 (0.0)	0 (0.0)	116 (48.1)	125 (51.9)
	Mean	3	258	0 (0.0)	0 (0.0)	142 (55.0)	116 (45.0)
WT salmon ^e	Mean	2	157	0 (0.0)	0 (0.0)	85 (54.1)	72 (45.9)

^a Rainbow trout recipients received freshly prepared testicular cells.

^b Rainbow trout recipients received testicular cells retrieved from whole rainbow trout frozen and stored in a freezer for 7, 30, 189, 371, or 738 days.

^c Masu salmon recipients received testicular cells taken from whole rainbow trout frozen and stored in a freezer for 371 days.

^d Masu salmon recipients received freshly prepared testicular cells.

^e Wild-type diploid fish that did not undergo transplantation.

^f Fish dead subsequent to spawning at age of 2 years.

^g Fish initially matured at age of 3 years.

Table S3. Viability of GFP-labeled type A spermatogonia on cryoinjury

Group	No. of initial GFP-labeled type A spermatogonia ^c	Freezing condition (°C)	Storage condition (°C)	Storage period (hours)	Thawing condition (°C) ^d	No. of GFP-labeled type A spermatogonia (viability, %) ^e
Frozen ^a	$15,033 \pm 458$	Liquid nitrogen (-196)	Liquid nitrogen (-196)	3.5	Incubator (10)	0 (0) ^f
Fresh control ^b	$15,467 \pm 395$	-	Incubator (10)	3.5	-	$15,306 \pm 526 \\ (98.8 \pm 1.1)^g$

^a Type A spermatogonia with 100 ml Eagle's minimum medium (EMEM) in cryotube frozen by direct plunging into liquid nitrogen followed by slow thawing.

Data are shown as mean \pm standard error of the mean values derived from three independent experiments.

Statistical significance was determined using Student's t-test for comparisons between two groups.

^b Type A spermatogonia with 100 ml EMEM in cryotube as a control of frozen group.

 $^{^{\}rm c}$ Initial GFP-lebeled type A spermatogonia prepared from pvasa- $\it Gfp$ rainbow trout was maintained with EMEM in a 10 $^{\rm c}$ C incubator.

^d Frozen cryotube were slowly thawed in pre-frozen Bicell slow-freezing container (Nihon Freezer) located in a 10°C incubator for 3 hours.

^e Viability of GFP-labeled type A spermatogonia was analyzed by Guava PCA-96 flow cytometry (Millipore) immediately after thawing.

 $^{^{\}rm f,g}$ Values in a column with different superscripts are significantly different (P < 0.05).