
Supplemental Experimental Procedures: 

Fly Stocks 

We used the following GAL4 lines: 

VT029306 (cell types AV1, AV5, and AV6) 

VT011148 (cell type AV6) 

VT050279 (cell types AV2 and AV3)  

VT050245 (cell type AV4) 

VT002042 (cell type V1) 

NP1046 and VT049365 (cell type B2) 

VT lines came from the Vienna Tiles GAL4 collection (BJD, unpublished, see http://stockcenter.vdrc.at 

for z-projections of these lines). NP1046 was a gift from A. Kamikouchi (Kamikouchi et al., 2006). Cell 

types AAL1 and V2 were identified by dye fills following patch clamp recordings (see below and 

Supplemental Movie M1) not by GFP labeling with a particular genetic enhancer line. Each GAL4 line 

was crossed to UAS-eGFP2x to target identifiable neurons for patch clamp recordings, and to UAS-

DenMark2; UAS-synaptotagmin-GFP (Nicolaï et al., 2010; Zhang et al., 2002) for identifying dendrites 

and axons, respectively (see Table 1). 

 

Immunohistochemistry  

Brains were dissected in phosphate-buffered saline (PBS) and fixed for 45-50 minutes in 

paraformaldehyde (4%) at room temperature, and then blocked in PBS + 0.1% Triton + 5% normal goat 

serum. The following primary antibodies were used: mouse anti-nc82 (1:20) (DSHB nc82), rabbit anti-

GABA (1:100) (Sigma-Aldrich A2052), mouse anti-DChAT (1:1000) (DSHB ChAT-4B1), rabbit anti-

DsRed (1:500) (Clontech 63296), and mouse anti-GFP (1:1000) (Life Technologies A-11120). The 

following secondary antibodies were used: goat anti-mouse AlexaFluor594 (1:300) (Life Technologies A-

11005), goat anti-rabbit AlexaFluor633 (1:400) (Life Technologies A-21070), goat anti-mouse 

AlexaFluor488 (1:200) (Life Technologies A-11029), goat anti-rabbit AlexaFluor555 (1:200) (Life 
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Technologies A-21429), and goat anti-mouse AlexaFluor568 (1:400) (Life Technologies A-11004). To 

detect biocytin from neuronal fills, we used Strepavidin AlexaFluor568 (1:300) (Life Technologies S-

11226). Brains were mounted in Vectashield (Vector labs H-1000) and imaged under a confocal 

microscope.  

 

Anatomy 

From dye fills made during patch clamp recordings (see below), we were able to unambiguously identify 

the recorded neuron type in each VT GAL4 line confocal image stack (generated by the Dickson Lab; 

available at http://brainbase.imp.ac.at). We used the SimpleNeuriteTracer plugin in Fiji (Schindelin et al., 

2012) to manually trace the specific neuron type in the VT line image that was morphed to a template 

brain (Longair et al., 2011). These traces where then registered to the FlyCircuit reference brain (Manton 

et al., 2014) (code from https://github.com/jefferislab/BridgingRegistrations, accessed 3/22/2015). We 

then searched the Flycircuit database (http://www.flycircuit.tw (Chiang et al., 2010)) with these traces 

either manually or using the nBlast software package (Costa et al., 2015). Manual searches were 

performed with region-based queries. nBlast searches used the traces as a query after bridge 

registration from the Vienna Tile template to the FlyCircuit template. Neuron skeletons were then 

selected based on comparison with the original fills and are plotted in Figs. 2A and 2C  and Fig. S2. 

Queries and plotting were performed in R based on code modified from 

http://github.com/jefferislab/NBLAST_figures, accessed 3/22/2015). The fill for V2 did not allow us to 

identify it in the FlyCircuit database. We added the fill as a supplemental movie M1. 

 

Neural Recordings and Analysis 

Fly Preparation and Electrophysiology 

Virgin female flies (1-2 days old) were mounted and dissected as described previously (Murthy and 

Turner, 2013; Tootoonian et al., 2012). For in vivo whole-cell patch clamp recordings, neuronal cell 

bodies were either accessed from the posterior surface of the head (cell types AV1, AV5, AV6 and V1) or 
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from the ventral surface, through the proboscis (cell types B2, AV2, AV3, AV4, AAL1 and V2). For both 

types of mounting, the antennae were kept dry and mobile for auditory stimulation. Whole-cell patch 

clamp recordings were performed as described previously (Murthy et al. 2008). We typically removed the 

perineural sheath with a suction pipette under visual control. We used patch clamp electrodes pulled 

from capillary glass (o.d., 1.5; i.d., 1.1) with resistances of ~5-6 M�. Only neurons with input resistances 

> 50m� were included for analysis. All neurons were filled with biocytin. Neuronal membrane potential 

was recorded in current clamp mode (neurons were held between –65 to –59 mV) with a Multiclamp 

700B amplifier (headstage CV-7B) and digitized at 10 kHz in Igor Pro (Wavemetrics). Raw data were 

then further analyzed using Matlab (Mathworks). Recordings typically lasted for 30-60 min. 

 

Sound delivery system 

The sound delivery system consisted of i) a sound card (M-Audio Delta 44, 16 bits, 44100 Hz, 2-

channel), ii) a 2-channel amplifier (Crown D-75A), iii) a headphone speaker (KOSS, 16 Ohm impedance; 

sensitivity, 112 dB SPL/1 mW), and iv) a coupling tube (12 cm, diameter: 1 mm). We compensated for 

distortions in the system as previously described (Tootoonian et al., 2012) by first calculating the transfer 

function of our system and then by multiplying each stimulus by the inverse of the transfer function 

before playing it back. To measure sound intensity, we first calibrated a pressure gradient microphone 

(NR23159, Knowles Electronics Inc., Itasca, IL, USA) under far field conditions in an anechoic chamber 

against a pressure microphone (4190-L-001, Brüel & Kjaer). Calibration was performed using pure tones 

(100-1000 Hz, each 2 seconds). The detailed procedures and cross-calibration between the pressure 

and the pressure gradient microphone were described in (Göpfert et al., 2006). To estimate the sound 

amplitude of each stimulus we placed the calibrated gradient microphone at the same position as the fly 

(2-3 mm from sound tube outlet) in separate experiments. The recorded voltage was then converted to 

particle velocity (with units mm/s). 

 

Acoustic stimuli 
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The following acoustic stimuli were presented to flies on the electrophysiology rig: i) pure tones (8 

frequencies: 100, 160, 200, 250, 300, 400, 550, and 700 Hz, amplitude: 3.7 mm/s, N=32 cells), ii) white 

noise (frequency range: 80-1000 Hz, amplitudes: 0.25, 0.4, 1.0, and 1.8 mm/s, N=32 cells), iii) synthetic 

pulses trains (20 pulses at interpulse intervals: 20, 30, 40, 60, 90, and 120 ms, carrier frequency: 200 Hz, 

amplitudes: 0.9, 1.4, and 5.5 mm/s, N=32 cells), iv) stimuli with a naturalistic bout structure, i.e. artificial 

pulse trains (IPI 40 ms, duration 1s) separated by pauses drawn from the distribution present in D. 

melanogaster courtship songs (overall stimulus duration 10 minutes, N=12 cells), and v) D. melanogaster 

songs recorded during courtship (10 stimuli, each duration 3 minutes, N=20 cells). Due to limited 

recording time, we recorded only single trails.  

 

Carrier frequency and intensity tuning curves 

We constructed carrier frequency tuning curves from voltage responses to 8 pure tones and intensity 

tuning curves from voltage responses to white noise delivered at 4 different intensities (see Acoustic 

stimuli). The membrane potential traces were first offset (from resting potential) to zero by subtracting the 

mean baseline activity 1 s before stimulus presentation. The steady-state response was computed as 

average Vm from 2-4s of the stimulus presentation). To compare across cell types, tuning curves of each 

recording were normalized to the maximum and then averaged across individual recordings.  

 

Inter-pulse interval tuning curve 

IPI tuning curves were calculated for spiking responses (only for cell types AV1 and AV3, Fig. S3) and for 

subthreshold Vm responses (all AMMC/VLP neurons, Fig. 2E). For spiking responses, tuning curves 

were based on the number of spikes produced during the response to each pulse train. For subthreshold 

responses, we calculated the integral voltage in response to each pulse train, after subtracting the 

baseline voltage. All raw tuning curves were normalized by the duration of the pulse train to yield a 

response rate in units of ‘Vm per second’. To compare across cell types, tuning curves of each recording 

were normalized to the maximum and then averaged across individual recordings.  
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Behavioral Recordings and Analysis 

We used a previously published dataset of natural courtship song and accompanying male and female 

movements, from pairs of wild type males (from 8 geographically diverse strains) and PIBL (pheromone-

insensitive and blind) females (Coen et al., 2014).  

We used the following wild type strains: 

!" Wild type from Nairobi, Kenya; collected by Andolfatto & Bachtrog (2006) �  

!" Canton-S laboratory strain �  

!" Wild type from San Diego, California; collected by Andolfatto (2006) �  

!" Wild type from Cartagena, Colombia; collected by Andolfatto (2009) �  

!" Wild type from the Netherlands; collected by Davis (2000) �  

!" Wild type from Zanzibar, Tanzania; collected by Andolfatto & Bachtrog (2006) �  

!" Wild type from Harare, Zimbabwe; collected by Begun (1993)  

!" Wild type from Victoria Falls, Zimbabwe; collected by Ballard (2002) �  

Methods for tracking fly position and song segmentation are described in (Arthur et al., 2013; Coen et al., 

2014). A pulse train was defined as a consecutive sequence of pulses with intervals smaller than 200ms. 

Likewise, sine song was defined as a consecutive stretch of sinusoidal modulation in the song with a 

pause smaller than 200ms. Bouts were defined as continuous sequences of pulse or sine song or 

combined pulse and sine song, with intervals shorter than 200 ms. Pauses were defined as intervals 

between song or pulse trains longer than 200ms. We described song structure using three types of 

summary statistic (amount, onset, and duration), calculated within sliding time windows of length 5-120s, 

with 50% overlap between windows. ‘Amount’ was defined as the total amount of each song type (pulse, 

sine, bout=all song). ‘Number of onsets’ corresponded to the total number of segments for each song 

type (pulse, sine, bout). ‘Duration’ was the average duration of each song type (pulse, sine, bout, pause). 

We also quantified the average duration of IPIs. This gave us a total of 11 song features (see Fig. 1G). 
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The choice of time window only affected the overall magnitude of correlations between song features and 

female behavior, not the relative performance of individual features. 

 The main immediate effect of song on female behavior is a reduction in speed, dependent on her 

receptivity state (Bussell et al., 2014; Coen et al., 2014). We therefore used the average female speed 

during each time window as a behavioral readout. Female behavior (including her speed) influences 

male song choice (pulse versus sine) on timescales of approximately 100-200 ms (Coen et al., 2014). To 

avoid any confounding effects associated with the male actively patterning his song in response to 

female speed, we omitted female speed data during (and 300ms before and after) song. We also 

excluded time windows with less than 5% and more than 95% song. 

 To visualize the relation between female behavior and song features we binned song feature 

values by percentiles (~100 data points per bin) and plotted the mean song feature value and mean 

female speed for each bin. Error bars correspond to the s.e.m. of the female speed for each bin. These 

plots are termed ‘preference functions.’  

To determine statistical associations between song features and female speed, we calculated 

Spearman’s rank correlation using the whole data set. We chose rank – instead of the linear – correlation 

to quantify the association between song features and female speed since preference functions were 

often nonlinear but monotonous (e.g. saturating). To avoid spurious correlations due to strain-specific 

differences in speed or song features, we z-scored values for speed and song features for each wild type 

male strain (all females were of the same genotype).  

To ensure that bout duration was sufficient to predict female speed, we determined the 

performance of bivariate models. We fitted linear models of the form v’ = a0 + f1 + a2f2 + a3f1f2, where v’ is 

the female speed, f1 and f2 are the two song features and ai are the model coefficients (a3 is the 

interaction term). In the case of f1=f2, this corresponds to a univariate quadratic model. We then 

computed the rank correlation between v’ and the actual female speed. 

 

Computational modeling - encoder models 
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We used encoder models to quantitatively describe how sound is represented in AMMC/VLP neurons 

and as a tool to predict responses to courtship song. 

 

Linear-nonlinear (LN) models 

LN models describe the transformation from the stimulus to the neural response using a linear filter and a 

static nonlinearity function. The linear filter ! "  in our case corresponds to the cell’s preferred temporal 

feature, while the nonlinearity N(g) transforms the filtered stimulus g to the predicted response # and 

accounts for rectification or saturation in the response:$#(&) = )(*(&)) = )(∫ ,"!(")-(" − &)), 

where -(&) is the stimulus envelope (extracted using the root mean square method, sigma=16 ms). We 

chose the stimulus envelope as the input to the LN model since none of the AMMC/VLP neurons we 

recorded resolved the carrier frequency of the elements of courtship song, but rather represent the 

smoothed, time-varying amplitude of the stimulus (Fig. 2D, 3E, Fig. S5A,B).  

The standard method for fitting such models is by stimulus-response correlation (Schwartz et al., 

2006). However, this correlation yields an unbiased estimate of the filter only if the stimulus is Gaussian. 

Since our stimuli are non-Gaussian, we fitted the model by directly minimizing the mismatch (mean-

squared error) between the actual and the predicted response: /#*0123,5[(# & − # & )7]. This objective 

function was minimized using ridge regression, which adds a penalty term to the objective function that 

suppresses filter components that do not contribute to the model performance.  We used the empirical 

Bayes implementation described in (Park and Pillow, 2011) with code publicly available from 

http://pillowlab.princeton.edu/code/code_ALD.html. 

The membrane voltage and the stimulus envelope were down sampled to 250 Hz. For fitting we 

used the responses to pulse train stimuli of intensity of 5.5 mm/s, since they were presented for all 

recordings and responses exhibited the best signal-to-noise ratio. We did not observe any strong 

intensity dependence of the model properties. Filter duration was 2048 ms and filters were estimated on 

a basis of 16 raised cosine bumps with nonlinear spacing (Fig. S4A). The input-output function ) was 
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estimated using smoothing-spline interpolation between the linear prediction and the actual response 

(Matlab’s fit function with the smoothingspline option and the smoothing parameter set to 0.5).  

 

Adaptive LN models  

All recordings exhibited a prominent decrease of response amplitude over the duration of the pulse 

trains. Since the standard LN could not account for this response property of AMMC/VLP neurons, we  

explicitly added adaptation to the model. Adaptation can have multiple sources that are hard to isolate 

experimentally. Possible sources in an AMMC/VLP neuron are: JON (Johnston’s Organ neuron or 

auditory receptor neuron) adaptation, synaptic depression at JO-AMMC or AMMC-VLP synapse, 

adaptive conductances in dendrites and axons of AMMC neurons, pre or post-synaptic inhibition. Since 

the identification of the biophysical bases of adaptation was beyond the scope of this study, we sought a 

phenomenological description that could characterize the stimulus transformation associated with 

adaptation while remaining agnostic as to the specific source(s) of adaptation. We found that a model 

based on a depressing synapse acting divisively on the input worked well for reproducing the adaptation 

in our recordings (Tsodyks et al., 1998). 

, &; :, " = , & − 1 + - & − 1 ⋅ 1 − , & − 1 ⋅ : − , & − 1
"  

Here d is the depression status, s is the stimulus envelope, v is the rate of vesicle depletion per unit of 

presynaptic potential, and " is the recovery time constant. 

To account for the fact that adaptation is likely mediated by several sources and hence occurs on 

multiple time scales, we implemented adaptation as a bank of depressing synapses (David and 

Shamma, 2013). 

,(&) = w(:, ") ⋅ ,(&; :, ")
?,@

$

-A(&) = -(&) ⋅ [1 − ,(&)] 
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d(t;v,") is the ‘depression trace’ for each individual time scale tau, w(v,$") the weight of each time scale, 

d(t) the total depression trace, and sd(t) is the depressed stimulus that forms the input to the standard  

LN model.  

Preliminary analyses indicated that eight different time scales " (32, 64, 128, 256, 512, 1024, 2048 ms) 

with a single depletion rate v (0.2) plus one non-adapting input synapse was sufficient to reach optimal 

model performance. 

Fitting this equation directly to the data involves solving a nonlinear regression problem. We 

hence applied a 'kernel trick' as in (David and Shamma, 2013), by pre-computing synaptic depression 

traces for all parameter combinations (v,") and representing the depressed stimulus as a weighted sum 

of these 'basis traces' – one for each adaptation time constant. Thereby, the problem is reduced to a 

linear, constrained (all B :, " ≥ 0) optimization problem. This approach thus constitutes a 

computationally efficient way to incorporate adaptation on multiple timescales. 

The complete model (adaptation stage followed by the LN) is fitted iteratively in two steps: 

0. Initialize parameters with filter and nonlinearity from LN model without adaptation  

1. Optimize adaptation parameters (weights for each adapted 'basis function') by minimizing the mean 

squared error between prediction and response, while holding the filter fixed but using an optimal 

nonlinearity. 

2. Find filter and nonlinearity that transform the adapted stimulus to the Vm as described for the LN 

models above while holding the adaptation parameters fixed. 

Repeat until convergence. 

This procedure usually converges to a stable set of adaptation parameters and filter/NL after two cycles. 

Filter shapes change only little when adding adaptation.  

We tried several alternatives to this divisive input gain control model (subtractive input gain 

control, a mixture of subtractive and divisive input gain control, subtractive or divisive output gain control 

(acting on the output of a standard LN model)). Neither of the variants significantly improved prediction 
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performance, but they all made the fitting procedure computationally more demanding and unstable. 

Note that subtractive output gain control is implemented through the filter’s negative lobe. 

 

Model evaluation 

Model fit was estimated using cross-validation. That is, we used 3/4 of the data from each recording for 

fitting the responses and the remaining 1/4 to estimate the linear coefficient of determination #7 between 

predicted and actual neuronal responses. We did not use rank correlation since the nonlinearity stage in 

the aLN models accounted for weak nonlinearities in the relation between model output and neuronal 

response. To quantify how well aLN models fitted to pulse trains generalized to courtship song, we 

compared the performance of these models to those directly fitted to responses to courtship song 

excerpts (see Acoustic Stimuli). The performance of the latter model variant constitutes an upper bound 

for the models fitted to pulse train responses when tested on courtship song responses. We also tested 

the models fitted to pulse train responses to responses to longer pulse train stimuli with a naturalistic 

bout structure (see Acoustic Stimuli).   

To determine whether filter shapes and adaptation parameters (weights for individual time 

constants) were cell-type specific, we compared the similarity of these parameters across and within cell 

types. As a similarity measure we used Pearson’s correlation coefficient r.  

 

Computational modeling - decoder models 

We sought to relate song and female behavior to the neural representation in the brain. To that end, we 

first predicted AMMC/VLP responses to the same natural courtship songs used in the behavioral analysis 

and designed a simple readout that could explain the observed female speed.  

  

Generation of neuronal surrogate responses for natural song using the aLN encoder model 

Since the original recordings did not allow a reliable estimate of the song amplitude as received by the 

female – which changes with the male’s distance and angle to the female - we generated naturalistic 
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song segments from the original recording by assuming a pulse amplitude of 1 mm/s and a sine song 

amplitude of 0.25 mm/s. This choice of amplitude values reflects the fact that sine song is usually softer 

than pulse song (see Fig. 1A). Results were robust to the specific choice of absolute and relative 

amplitudes of sine and pulse.  

 

Prediction of female speed from surrogate responses 

The Vm predicted by the aLN model for each cell was transformed using a piecewise linear 

approximation to a sigmoidal nonlinearity with a threshold E and a saturation term F: 

#G(&) =
0$1H$# & < E$
1$1H$# & > F
# & $K&ℎM#B1-M$

 

 The output #G(&) of this nonlinearity was then integrated to yield a prediction of the female speed v’ for 

each time window. We selected the optimal parameters of the nonlinearity (E, F) for each cell (i.e., those 

that maximize Spearman’s rank correlation between female speed and decoder prediction) using a grid 

search with values spanning the range of aLN response values in 41 steps (820 parameter combinations 

after excluding all parameter combinations where the threshold is larger than the saturation point). For 

the modified decoder, we integrated only the positive or negative parts (relative to baseline) of the 

nonlinearly transformed aLN responses. The parameters of the nonlinearity were the same as those for 

the original decoder. The predicted female speed was then given by the ratio of the integrated positive 

and integrated negative parts of the aLN response.  

To assess the role of filtering and adaptation in predicting female speed from aLN responses, we 

ran the same analysis using predicted responses either lacking a filter (aN models) or lacking the 

adaptation term (LN models). Spearman’s rank correlation between the decoder prediction and female 

speed or song features as well as tuning curves for visualization were computed as for the behavioral 

analysis. 
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Supplemental Figures and Legends 

 

Fig S1 Song features and their correlation with behavior (refers to Fig. 1) 

A Extraction of the song features from natural courtship song. Song is arranged in bouts which consist of 

pulse and sine mode (compare with Fig. 1A). We quantified the duration of individual modes and full 

bouts as well as the pause between bouts. Likewise, we counted the number of individual pulse, sine or 

bout onsets. The song features are then given as the average values of individual song elements over a 

time window of typically 60 seconds. Amount was given by the fraction of time window comprised of sine, 

pulse or song bouts. 

B Matrix of rank correlations between pairs of song features (for color-coding see color bar). 

C Performance of two-variable models. Rank correlation between female speed and the output of linear 

models whose input was pairs of song features, including an interaction term (see Experimental 

Procedures). The best two feature model only marginally outperforms correlations with bout duration 

(best two feature model: ρ=0.48 versus bout duration only model: ρ=0.45). All models that include bout 
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duration show similar performance (for color-coding see color bar). Thus, combining bout duration with 

other song features does not improve the rank correlation with female speed. 

D Rank correlation between amount of song and female speed for non-overlapping windows of song and 

speed. Duration of the window for song integration is on the x-axis. Duration of the window for speed 

integration is color coded (see legend). The rank correlation saturates for time windows exceeding the 

duration of IPIs or individual song bouts, supporting our conclusion that female flies are sensitive to song 

structure on long timescales. N=3896 minutes of song.  
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Fig. S2 Morphology and projections of recorded neurons (refers to Fig. 2) 

A We recorded from neurons in the following VT lines (VT049365 – B2; VT029306 – AV1, AV5, AV6; 

VT050279 – AV2, AV3; VT050245 – AV4; VT011148 – AV6; VT002042 – V1). Scale bar in each panel 

corresponds to 100 microns. 

B Frontal and lateral brain views of single neuron traces from the FlyCircuit database (Chiang et al., 

2011, http://flycircuit.tw). Each recorded neuron was filled post-hoc. These fills were used to inform digital 
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tracing of the recorded neuron in the VT line image, which was warped to a standard reference brain 

(see Experimental Procedures). We then used NBlast (Costa et al., 2015) and region-based queries to 

search the FlyCircuit database for the recorded neuron type (see FlyCircuit id for each trace). Anatomical 

structures: AMMC – green, iVLP – red, pVLP – blue, AL – purple. 

C, D Cell types AV1 and AV6 appear similar in the FlyCircuit single neuron traces (see B) – however, 

each cell type exhibits characteristic anatomical features that discriminate them as different 

morphological types. Single cell MARCM clones of AV1 (A) and AV6 (B) neurons from the FlyCircuit 

database (AV1 FlyCircuit id 3685, AV6 FlyCircuit id 3014). AV1 projects laterally into the VLP whereas 

AV6 has a relatively straight ventral branch. In contrast with the MARCM clone, fills of AV6 always label 

neurons in both hemispheres along with the giant fiber neuron (GFN), due to gap junction coupling 

(Phelan et al., 2008). AV1 fills only label a neuron in one hemisphere (see Supplemental Movies of 

neuronal fills S2_AV1.avi and S5_AV6.avi).  

E, F Cell types AV2 and AV3 also appear similar. AV2 projects more superficially (anterior) and ventrally 

into the VLP versus AV3 (E). AV3 projects more dorsally into the VLP than AV2 (F). See also 

Supplemental Movies of neuronal fills S3_AV2.avi and S4_AV3.avi. 

G Example of anatomical characterization performed on each VT GAL4 line (see Table 1). (left) Brain of 

female carrying VT029306, UAS-eGFP2x transgenes. The soma positions of the three recorded cell 

types from this GAL4 line are indicated along with the location of the AMMC. Cell type AV1 is filled with 

biocytin. (right) Brain of female carrying either VT029306, UAS-syt-GFP, UAS-DenMark transgenes (top 

row) or VT029306, UAS-eGFP2x transgenes (bottom two rows). Axons (green, syt-GFP) project to the 

VLP, whereas dendrites (magenta, DenMark) innervate the AMMC. Anti-GABA antibody labels the 

somata of GABAergic neurons, while anti-AChT antibody labels the processes of cholinergic neurons. 
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Fig. S3 Spiking responses and tuning of AMMC/VLP neurons (refers to Fig. 2) 

A Spikes can be detected in recordings of AMMC/VLP neurons. AV3 responses (black) to pulse train 

stimuli (blue). Plot at right is blow up of region marked by dashed rectangle.   

B,C AV3 and AV1 neurons spike infrequently and unreliably in response to pulse trains. Spike raster 

plots for different recordings of AV3 (B) and AV1 (C) – each cell was recorded in a different animal. 

Rows correspond to individual cells, stimulated with pulse trains of different IPI and intensity (measured 

in mm/s). Vertical blue line marks stimulus onset. 

D, E IPI tuning curves for spike count versus Vm for AV3 (D) or AV1 (E) . To facilitate comparison, 

curves of individual recordings were normalized. Tuning based on Vm is more reliable across cells. 

F Intensity of sinusoidal and band-limited (80-1000Hz) white noise stimuli. See Experimental Procedures 

for information on calibration of sound delivery system. (right) Example Vm responses of neuron type 

AV1 to a 300 Hz tone at 3.7 mm/s or white noise at 1.8 mm/s. 
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G Normalized integral Vm in response to sinusoids of different frequencies (intensity 3.7mm/s). 

H Normalized integral Vm in response to white noise stimuli presented at different intensities. 

Plots in G and H are mean +/- s.e.m. across recordings of a given cell type; each recording is from a 

different animal. Tuning curves of individual recordings were normalized before averaging. Color follows 

the scheme in Figs. 2 and 3 of the main mansucript. 
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Fig. S4 Modeling AMMC/VLP responses to synthetic pulse trains (refers to Fig. 3) 

A Detailed schematic of the adaptive linear-nonlinear model (aLN): The stimulus envelope s(t) is pre-

processed in an adaptation stage: The output of a bank of depressing synapses with different adaptation 

timescales is weighted to yield the total depression term a(t) that is multiplied with the stimulus (see B for 

details on the adaptation stage). This adapted stimulus s’(t) forms the input for a standard linear-

nonlinear model with a filter F(τ) and an input-output function N(g). Model parameters are fitted by 

minimizing the squared error. The resulting model prediction matches the measured membrane voltage 

(Vm) very well (r2=0.88, small plot at bottom right of this panel). The filter F(τ) is defined as a weighted 

sum of basis functions spread nonlinearly across the duration of the filter (inset below F(τ)).  

B Traces for the individual adaptation time scales d(t) included in the model. The adaptation current a(t) 

(red) in (A) is given by one minus the weighted sum of individual traces.  

C, D Cell-type specificity of model parameters. Correlation between filter shapes (C) and adaptation 

parameters (D) when comparing within vs. across cell types. High cell-type specificity corresponds to 

high correlation between parameters within but not across cell types. This is true for the filter shapes but 

not for adaptation parameters, indicating that the adaptation parameters are relatively unspecific to cell 

type (r2 of filters across type 0.47(0.58) (median(IQR)) versus within type 0.84(0.24), p<6 10-14, rank sum; 

r2 of adaptation parameters across type 0.13(0.73) versus within type 0.55(0.84), p=0.11, rank sum) 

0 2 4
0

2

4

response [mV]

pr
ed

ic
tio

n 
[m

V]

membrane
voltage
[mV] 

adaptation
a(t)

stimulus
s(t)

linear
filter
F(τ)

input-output
function

N(g)
x

A

adapted stimulus s’(t) filtered stimulus g(t)
500 ms

B
AV1
model

number of non-zero parameters 
(out of 7)

0 1 2 3 4 5 6 7

nu
m

be
r o

f c
el

ls

0

5

10

15
E

 dominant τ [ms]
32    128 512 2048

nu
m

be
r o

f c
el

ls

0

5

10

15

20
F

gain ada/gain stim (log)
-6 -4 -2 0

nu
m

be
r o

f c
el

ls

0

2

4

6

8

10
G

cell type
diff same

fil
te

r c
or

re
la

tio
n

0

0.2

0.4

0.6

0.8

1
C

cell type
diff same

co
rra

lti
on

 o
f a

da
pt

at
io

n 
pa

ra
m

et
er

s

0

0.2

0.4

0.6

0.8

1
D

time relative to prediction [ms]
-1000

no
rm

al
iz

ed
 a

m
pl

itu
de

0

0.3

0.6

32 ms, w=0.38 

64 ms, w=0.00 

128 ms, w=0.00 

256 ms, w=0.00 

512 ms, w=0.00 

1024 ms, w=0.00 

2048 ms, w=2.13 individual time scales d(t)

100 ms

total w=2.51 
total adaptation current a(t)

raw stim, w=2.51 raw stimulus s(t)

adapted stimulus s‘(t)

0-500



 

 19 

E The number of adaptation timescales with non-zero weight for each cell.  

F The dominant adaptation timescale (given by largest weight) for each cell in the data set.  

G Adaptation strength of all cells in the data set. Adaptation strength was defined as the ratio of the 

weight of all 7 adapting synapses and the weight of the non-adapting synapse (‘raw stim’ in (B)). 

N=32 cells for C-G. 
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Fig. S5 Adaptation within and across pulse trains, and role of the negative filter lobe (refers to 

Fig. 3) 

A The adaptation term of the aLN model is necessary to reproduce observed response adaptation to 

pulse train stimuli. Recorded Vm response (blue, single-trial response each from one recorded cell of a 

given cell type) and model predictions (w/ adaptation (aLN) red, w/o adaptation (LN) orange) to pulse 

trains containing different IPIs (rows). Vertical scale bars in the first row correspond to 2 mV. 

B The aLN model also reproduces offset responses. Example Vm response (blue, single-trial response 

each from one recorded cell) and aLN predictions (red) for seven different cell types. 

C Removing the negative lobe of the linear filter (setting all negative weights to zero) in the aLN models 

(termed aL+N models) strongly affects model responses – both adaptation as well as negative offset 

responses disappear (yellow – model, blue – Vm, same cells as in B). 

D Re-fitting the adaptation parameters and the nonlinearity for a`L+N` models largely restores adaptation 

and negative offset responses (purple – model, blue – Vm, same cells as in B). However, errant negative 

responses at pulse onset are also present (see arrows and panel G). 

E Performance for aLN models versus models with purely positive filters before (aL+N, r2 = 0.65(0.36), 

blue crosses) and after (a`L+N`, r2 = 0.86(0.18), black dots) re-fitting the adaptation parameters and the 

nonlinearity. In both cases, constraining the filter to be positive decreases performance (p<3x10-7, sign 

test). 

F Models with purely positive filters exhibit 20% stronger adaptation to compensate for the lack of the 

negative filter lobe. 

G A small ‘hook’ in the nonlinearity (black arrow) aids in reproducing negative offset responses in the 

absence of any negative weights in the linear filter (red – nonlinearity of the original aLN model, purple – 

re-fitted nonlinearity for an a`L+N` model). However, the shape of this nonlinearity also produces negative 

responses at the onset of the stimulus (see traces to the left of this panel and in panel D, arrows indicate 

negative onset responses produced by the nonlinearity). We never observed such a response feature in 

our recordings (see e.g. Fig. 3C,E). Note that the negative onset responses in panel D are shorter than 
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the offset responses because the filters are asymmetrical (Fig. 3G) and hence produce pulse responses 

with steep onsets and shallower offsets. Horizontal and vertical black lines correspond to y=0 and x=0, 

respectively. 

H Calculation of the magnitude of the onset and offset responses. Onset response was defined as the 

difference in the average Vm in the 40ms before and 100 ms after a bout onset. The offset response was 

defined as the average Vm in the 1000ms following each bout. Note that for short pauses between 

bouts, the offset response is cut short by the response to the following bout. Vm trace (blue) shows one 

recording of cell type AV1. 

I Dependence of onset response on bout pause for data (blue) and the aLN model fitted to short pulse 

train stimuli (black, r2=0.87). Onset response is smallest for short pauses due to adaptation. 

J aLN models reproduce the relationship between pause and onset response (r2=0.63(0.23), 

median(IQR)). 

K aLN models reproduce the offset responses. r2 between response and aLN prediction in the 1000ms 

following each bout offset (r2=0.71(0.26), median(IQR)). 

N = 32 cells for E and F; N=12 cells for J and K. 
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Fig. S6 The optimal sigmoidal nonlinearity in the decoder model reduces the dynamic Vm range 

and amplifies negative response components through strong saturation (refers to Fig. 4) 

A AMMC/VLP model response to naturalistic song (same AV1 cell shown in Fig. 3). Baseline Vm is 

black, positive and negative response components are indicated in orange and blue, respectively. 

Orange/blue bar at the beginning indicates the range of values for the positive and negative Vm 

components. Note a strong asymmetry in the Vm towards positive response components. 

B Same AMMC/VLP model response in (A), but following transformation by the sigmoidal nonlinearity 

optimized for decoder performance. Note a strong compression of the positive response component 
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(orange) and a relative amplification of the negative response components (blue). Vm asymmetry is now 

shifted toward negative response components. Bars indicate range over the full minute of song, although 

only a short segment is shown here. Trace in (A) and (B) are normalized to their respective min/max 

range. 

C Vm asymmetry given as the log ratio between the range of positive and the range of negative 

response components (orange and blue in (A), (B)) before and after applying the sigmoidal nonlinearity 

(black and red, respectively). Note the shift of the asymmetry index from positive to negative values, 

indicating that negative response components tend to be stronger after sigmoidal transformation (median 

asymmetry before sigmoidal nonlinearity 3.4, after -1.9). N=26 since 6 low-performing cells did not 

exhibit robust negative response components (and exhibited poor readout performance). 

D Vm dynamic range is reduced by the nonlinearity (black – before, median 1.0, red – after nonlinearity, 

median 0.06). Dynamic range is normalized to 1 for all cells before applying the nonlinearity. Inset 

illustrates the effect of the nonlinearity on input and output dynamic range mainly due to compression by 

early saturation. N= all 32 cells. 

E  Match with behavior for individual neurons put through 4 different decoder models. The ratio-based 

decoder model presented in Fig. 5E is termed NRID: “N” – nonlinearity, “R” – rectification, “I” – 

integration, and “D” – division. The threshold and saturation parameters of the sigmoidal nonlinearity 

(“N”) were optimized for each variant. Labels correspond to the order of operations in the decoder. Upper 

and lower dashed lines indicate the behavioral correlation with bout duration and song amount, 

respectively. Placing the nonlinearity before rectification (“NRID”) or after rectification (“RNID”) yields 

identical performance values for all cells (ρ=0.42(0.02) for both, median(IQR), p=1, sign test between 

NRID and RNID). These values are also identical to those in Fig 5H. Decoder performance is unaffected 

by placement of the sigmoidal nonlinearity before or after rectification because the threshold and 

saturation parts of the nonlinearity affect the positive and negative response components independently. 

Placing the sigmoidal nonlinearity after the integration step (“RIND”), leads to minor, non-significant 

changes in decoder performance (ρ = 0.42(0.1), median(IQR), p=1.0, sign test between NRID and 
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RIND). Removing the nonlinearity altogether (“RID”) yields a small but significant decrease in 

performance (ρ = 0.40, p = 8 x 10-7, sign test between NRID and RID). This strongly contrasts with the 

sum-based decoder, where removing the nonlinearity led to a much stronger decrease in performance 

(w/o nonlinearity ρ =0.19, Fig. 4C). This indicates that the sigmoidal nonlinearity plays a smaller role in 

the ratio-based than in sum-based decoder.  

 

Supplemental Movies S1-S5 show images (full z-stack) of biocytin fills of recorded neurons (green – 

GFP, red – biocytin; Movie S1 – V2, Movie S2 - AV1, Movie S3 - AV2.avi, Movie S4 - AV3, Movie S5 - 

AV6.avi). 
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