Supporting Information

Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate

Saya Kakuda,⁺ Clarence J. Rolle,[‡] Kei Ohkubo,⁺ Maxime A. Siegler,[‡] Kenneth D. Karlin,^{*,‡} and Shunichi Fukuzumi^{*,†}

[†]Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

^{*}Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA

* To whom correspondence should be addressed. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; karlin@jhu.edu

Figure S1. Spectral changes in the reaction of NaI (0.30 M) and 20 times diluted of reduced product of O₂ (0.5 mM) in a 298K acetone solution including Fc^{*+} (2.0 mM), $[(tmpa)Cu^{II}]^{2+}$ (4.0 × 10⁻⁵ M), and (a) HOTf (2.0 mM) or (b) Sc(OTf)₃ (2.0 mM)

Figure S2. Optimized structures of $[(tmpa)Cu^{II}OOSc(OTf)_3]$ obtained by DFT calculations with the UCAM-B3LYP density-functional and the Lanl2dz basis set. The SOMO orbital is shown in the right panel. (a) The end-on peroxo complex is 19 kcal mol⁻¹ more stable than (b) the side-on peroxo complex.

Figure S3. (a) UV-vis spectral changes observed in the two-electron reduction of O_2 (0.9 mM) by Me_2Fc^* (10 mM) with Sc(OTf)₃ (10 mM) (red line) and with HOTf (10 mM) (black line), respectively, catalyzed by 1 (40 mM) in acetone at 298 K. (b) Time courses at 650 nm for formation of Me_2Fc^+ with Sc(OTf)₃ (red dots) and HOTf (black dots).

Figure S4. Spectral changes observed in the reaction of NaI (0.30 M) and 20 times diluted of reduced product of O₂ (11 mM) in a 298K acetone solution including Me₂Fc^{*+} (2.0 mM), $[(Cu^{II}BzQ)]^{2+}$ (0.20 mM), and (a) HOTf (0.50 mM) or (b) Sc(OTf)₃ (0.50 mM)

Figure S5. (a) Time profiles of formation of Fc^{*+} monitored by absorbance at 780 nm ($\varepsilon = 500 \text{ M}^{-1} \text{ s}^{-1}$) in electron transfer oxidation of Fc^{*} (2.0 mM) by O₂ (2.2 - 11 mM), catalyzed by [(tmpa)Cu^{II}]²⁺ (1) (0.002 mM) in the presence of Sc(OTf)₃ (10 mM) in acetone at 298 K. (b) Pseudo-first order plots. (c) Plots of k_{obs} vs [O₂]. (d) Time profiles of formation of Fc^{*+} in electron transfer oxidation of Fc^{*} (2.0 mM) by O₂ (11 mM), catalyzed by [(tmpa)Cu^{II}]²⁺ (1) (0.002 mM) in the presence of Sc(OTf)₃ (5 - 25 mM) in acetone at 298 K. (e) Pseudo-first order plots. (f) Plot of k_{obs} vs [O₂].

Figure S6. (a) Time courses of difference absorption spectra observed in electron transfer from Fc* (1.25, 1.50, 1.75 and 2.00 mM) to **1** in the presence of $Sc(OTf)_3$ in argon saturated acetone at 298 K. (b) Plot of pseudo-first-order rate constant vs [Fc*].

Derivation of $k_{cat} = 2k_{et}$

According to Scheme 1, where the rate-determining step is electron transfer from Fc^* to [(tmpa)Cu^{II}]2+, the rate of formation of Fc^{*+} is given by eq S1,

$$d[Fc^{*+}]/dt = 2k_{et}[Fc^{*}][Cu^{II}]$$
(S1)

where k_{et} is the rate constant of electron transfer from Fc^{*} to $[(tmpa)Cu^{II}]^{2+}$. Thus, the observed second-order rate constant $k_{obs} = 2k_{et}$, because two equivalents of Fc^{*+} are formed once electron transfer from Fc^{*} to $[(tmpa)Cu^{II}]^{2+}$ occurs, followed by the fast reaction of $[(tmpa)Cu^{I}]^{+}$ with O₂ and rapid electron transfer from Fc^{*} to $[(tmpa)Cu^{II}]^{2+}$ to $[(tmpa)Cu(O_2^{-})$ with Sc³⁺ to produce another equivalent of Fc^{*+} in Scheme 1.