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Appendix I: The electromagnetic fields produced by the cyclotron electron beam  

 

 

Fig. 1. 1 The schematic of cyclotron electron beam, the electron beam moves at a velocity 

z zu v e v e    with a cyclotron trajectory. 

 

  The schematic of an cyclotron electron beam (CEB) is shown in Fig.1.1, the 

electron beam moves at a velocity z zv v e v e    with a cyclotron trajectory. The 

vector and scalar potentials A  and   are used to derive the electromagnetic fields 

produced by the CEB. The vector and scalar potentials obey the 

following  d'Alembert equations, given below in MKS unit, 
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With Lorentz gauge: 
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t
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(I.3) 

Then, the electromagnetic fields E  and H  can be obtained: 

A A
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t
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
                   (I.4) 

The position and velocity vectors of the CEB can be described in Cartesian co

ordinate system. 

       e x y zr t e x t e y t e z t    
                     

(I.5) 

     z zv t e v t e v t  
                         

(I.6) 
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Then, the charge and current density can be expressed. 

           eq r r t q x x t y y t z z t           
          

(I.7) 

               z zJ v t e v t e v t q x x t y y t z z t    
       

    
(I.8) 

Where q  is the charge quantity, zv  is the z component of velocity, v  is the 

cyclotron velocity of the beam around z axis. In the cylindrical coordinate syst

em, 

   0 cos cx t r t 
                          

(I.9) 

   0 sin cy t r t 
                           

(I.10) 

  zz t v t 
                              

(I.11) 

Where 0r  is the radius of the trajectory projection of cyclotron electron beam in X-Y 

plane, 
0

c

v

r
  .  

Similarly, the observed position of fields can be expressed in the cylindrical 

coordinate system. 

 cosx r 
                         

(I.12) 

     s i ny r 
                         

(I.13) 

z z                             (I.14) 

Now the charge and current density can be expressed. 
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(I.15) 
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(I.16) 

The field can be obtained by using the Fourier transform, assume wave factor is in the 

form jk r j te   . 
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(I.17) 
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(I.18) 

http://dict.youdao.com/w/cylindrical-coordinate/
http://dict.youdao.com/w/cylindrical-coordinate/
http://dict.youdao.com/w/system/
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Submitting Eq. (I.17) and (I.18) into Eq. (I.1) and (I.2), the vector A  can be obtained 

by Fourier transformation in the wave vector space. 
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(I.19) 

Based on Lorentz gauge, we can get the scalar potential  .  

0 0

A

j


 




                            

(I.20) 

Based on the Eq. (I.4), we obtain the components of the electric field. 

 

Appendix II: The theory of circular cylindrical monolayer graphene structure 

 

 

Fig. 2. 1 Schematic of the circular cylindrical monolayer graphene structure with dielectric 

loading ( 0 1   ), the radius of the dielectric medium is ra, the radius of the trajectory projection 

of cyclotron electron beam in X-Y plane is r0, it moves at a velocity z zv v e v e    above the 

graphene layer with a cyclotron trajectory. 

 

2.1 Dispersion equation 

 

As shown in Fig. 2. 1, the scheme can be divided into two regions. Without charge 

sources, solving Eq. (I.1) and (I.2) together with the boundary conditions, the fields in 

region I and II can be obtained. The factor zjk z jm j t
e

  
 is omitted. 

In the region I ( ar r ): 
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where： 2 2 2

1 1 0c zk k k  ， 1 1 1 1 1 0 1 1 1

1
( ) [ ( ) ( )], ( ) ( )

2
m c m c m c c cJ k r J k r J k r J k r J k r 
      

In the region II ( ar r ): 

2 2

3 2 2 4 2 2

2 3 2 0 4 2

3 2 0 2 4 2

0
2 4 2 3 2

4 2 0 2 3 2

( ), ( )

( ) ( )

m
( ) ( )

( ) ( )

( ) ( )

II II

z c m c z c m c

II

r z c m c m c

II

z m c c m c

II

r z c m c m c

II z
m c c m c

E A k K k r H A k K k r

m
E jk k A K k r A K k r

r

E k A K k r j k A K k r
r

H jk k A K k r mA K k r
r

k
H mA K k r j k A K k r

r













 

  

 

  

 

            (II.2) 

where： 

2 2 2

2 0c zk k k  ， 2 1 2 1 2 0 2 1 2

1
( ) [ ( ) ( )], ( ) ( )

2
m c m c m c c cK k r K k r K k r K k r K k r 
       

Assuming that monolayer graphene is atomically thin, it can be regarded as a 

conductive surface with conductivity g . The boundary conditions are shown as 

below: 

,

( ) , ( )

a a a a

a a a a

I II I II

z zr r r r r r r r

I II I II I I

z z g g zr r r r r r r r

E E E E

H H E H H E

 

   

   

   

 

   
        (II.3) 

After substituting Eq. (II.1) and (II.2) into the above boundary conditions, the 

dispersion equation of circular cylindrical graphene structure with dielectric loading is 

obtained, 
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where： 
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1
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2.2 Power density 

2.2.1 Excitation of fundamental SPPs mode by a linearly moving electron beam 

 

Because the fundamental SPPs mode (m=0) is a transverse magnetic (TM) mode, it 

can be excited by the TM evanescent fields produced by a linearly moving electron 

beam (the particular case of CEB without rotating velocity). The electromagnetic 

fields produced by the linearly moving electron can be expressed as below [1]. 
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              (II.5) 

where
20

0 (1 1/ ),
2

z
q v

A
c


   

            
 

For the fundamental mode, the TM fields in the structure can be expressed as below. 

In the region I ( ar r ): 
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where： 2 2 2

1 1 0c zk k k  ， 0 1 1 1( ) ( )c cJ k r J k r    

In the region II ( ar r ): 
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where： 

2 2 2

2 0c zk k k  ， 
0 2 1 2( ) ( )c cK k r K k r    

The boundary conditions can be written as 

( ) ,( )
a a a a

I II i II i I I

z z z g zr r r r r r r r
E E E H H H E   

   
          (II.8) 

By solving the above boundary conditions, the fields coefficients can be 

determined. 

 

2.2.2 Excitation of hybrid modes by CEB 

The electromagnetic fields in the structure and produced by CEB are obtained in 

the previous paragraphs. The boundary conditions can be written as, 

( ) , ( ) ,

( ) , ( )

a a a a

a
a a a

I II i I II i

z z zr r r r r r r r

I II i I II i I I

z z z g r r g zr r r r r r

E E E E E E

H H H E H H H E

  

    

   

  

   

          
(II.9) 

Submitting the electromagnetic fields into the above boundary conditions, the field 

coefficients can be obtained. 

 

The excited SPPs are transformed into radiation in the dielectric medium when the 

Cherenkov radiation condition is satisfied. The radiation power density can be 

calculated by the following equation, 

*1
Re[ ]

2

I I

z rP E H rdrd                        (II.10) 

 

 

Appendix III: The theory of circular cylindrical double-layer graphene structure 

 

Fig. 3. 1 Schematic of circular cylindrical double-layer graphene structure with dielectric loading, 

the radius of the dielectric medium is ra, the dielectric film is in the region a br r r  , and the 

radius of the trajectory projection of electron beam is r0. 
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3.1 Dispersion equation 

 

  As shown in Fig. 3.1, the scheme can be divided into three regions. Without charge 

sources, solving Eq. (I.1) and (I.2) together with the boundary conditions, the fields in 

region I, II and III can be obtained. The factor zjk z jm j t
e

  
 is omitted. 

In the region I ( ar r ): 
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where： 

2 2 2
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In the region III ( br r ): 
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where： 
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The boundary conditions can be written as, 
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   ，
 (III.5) 

Submitting the electromagnetic fields into the above boundary conditions, the 

dispersion equation can be obtained. 

 

3.2 Power density 

 

3.2.1 Excitation of fundamental mode by a linearly moving electron beam 

 

  For the fundamental mode (m=0), the electromagnetic fields in the structure can be 

expressed as, 

In the region I ( ar r ): 
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where： 2 2 2

1 1 0c zk k k  ， 0 1 1 1( ) ( )c cJ k r J k r    

In the region II ( a br r r  ): 
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2 2

3 2 0 2 4 2 0 2

2 3 0 2 4 0 2

0 2 2 3 0 2 4 0 2

( ) ( )

[ ( ) ( )]

[ ( ) ( )]

II

z c c c c

II

r z c c c

II

c c c

E A k I k r A k K k r

E jk k A I k r A K k r

H j k A I k r A K k r  

 

  

   

        (III.7)                                 

where： 

2 2 2

2 2 0c zk k k  ，
0 2 1 2( ) ( )c cI k r I k r  , 

0 2 1 2( ) ( )c cK k r K k r    

 

In the region III ( br r ): 

2

7 3 0 3

3 7 0 3

0 3 7 0 3

( )

( )

( )

III

z c c

III

r z c c

III

c c

E A k K k r

E jk k A K k r

H j k A K k r 



 

 

                 (III.8)    

with 2 2 2

3 0c zk k k   

The boundary conditions can be written as, 

             

, ( )

, ( )

a a a a

b b b b

I I I I I I I

z z g zr r r r r r r r

I I I I I i I I I i I I I I I

z z z g zr r r r r r r r

E E H H E

E E E H H H E

 

  





   

   

  

    （ ）
(III.9) 

By submitting the electromagnetic fields into the above boundary conditions, the 

fields coefficients can be obtained. 

 

 

2.2.2 Excitation of hybrid modes by CEB 

 

The hybrid modes can be excited by the CEB, the boundary conditions can be written 

as,  

,

( ) , ( )

a a a a

a a a a

I II I II

z zr r r r r r r r

I II I II I I

z z g g zr r r r r r r r

E E E E

H H E H H E

 

   

   

   

 

   
        (III.10) 

2 2

, ( )

( ) , ( )

b b b b

b b b b

II III i II III i

z z zr r r r r r r r

II III i III III i II III

z z z g g zr r r r r r r r

E E E E E E

H H H E H H H E

  

    

   

   

   

         (III.11)
 

Submitting the electromagnetic fields into the above boundary conditions, the fields 

coefficients can be obtained. 

 

Appendix IV: Influence of relaxation time of graphene on radiation performance 

 

The performance of radiation from electron beam excited SPPs is mainly dependent 

on the quality of graphene, especially its relaxation time  . In this section, we 
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discuss the influence of   on the radiation performance. In the manuscript, the value 

of 1.2 ps   is used based on recent high-quality graphene [2]. While, it is known 

that the most CVD graphene is with low-quality, and its relaxation time would further 

decrease when placed on a dielectric substrate due to the extrinsic scattering [3], 

which leads to the small relaxation time of the order of 0.1 ps [4]. However, recent 

advances in CVD fabrication of high-quality graphene make long relaxation time 

available [5]. Fig. 4. 1 shows the results of normalized attenuation constants of 

graphene SPPs and Fourier spectra of radiation intensity as a function of frequency 

for relaxation time 1.2ps  and 0.1ps  , respectively. And other parameters are 

the same as those used in Fig. 2 in the manuscript. The attenuation constant of 

relaxation time 0.1ps   is much larger than that of 1.2ps  , especially in the 

long-wavelength regime where the radiation intensity is very weak. 

 
Fig. 4. 1 (a) Normalized attenuation constants of graphene SPPs and (b) Fourier spectra of 

radiation intensity as a function of frequency for relaxation time 1.2ps  and 0.1ps  .  

 

However, the situation is much better when the relaxation time increases to 0.2 ps, as 

shown in Fig. 4. 2. The ratio of attenuation constants for relaxation time 0.2ps   

and 1.2ps   is less than 10, so the radiation intensity is stronger for 0.2ps   
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than that for 0.1ps  . But the radiation intensity at the radiation peak is only 

thirtieth of that for 1.2ps  . Fig. 4. 3 shows Fourier spectra of radiation intensity 

for different relaxation times. Higher relaxation time leads to stronger and sharper 

radiation peak, which has been analyzed by [6]. This is caused by stronger resonant 

strength and lower resonant damping. While the radiation intensity for 1.2ps   is 

several times higher than those for 0.4ps  . So high performance radiation can be 

obtained in a wide relaxation time range. 

 

Fig. 4. 2 (a) Normalized attenuation constants of graphene SPPs and (b) Fourier spectra of 

radiation intensity as a function of frequency for relaxation time 1.2ps  and 0.2ps  . 
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Fig. 4. 3 Fourier spectra of radiation intensity as a function of frequency for different relaxation 

times. 
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