$\textbf{Title} \hbox{:} \ Effect of Interior Loop Length on the Thermal Stability and } pK_a \ of \ i\text{-Motif DNA}$

Byline: Samantha M. Reilly[†], Rhianna K. Morgan[‡], Tracy A. Brooks[‡], & Randy M. Wadkins^{†,*}

†Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677

[‡] Department of BioMolecular Sciences, University of Mississippi, University, MS 38677

*Corresponding Author: rwadkins@olemiss.edu

SUPPORTING INFORMATION

The excluded volume of PEG-i-motif complexes was calculated using the shift in T_m value of the i-motif in 40% PEG using the following equation (see reference 48).

$$T_{M} = T_{M}^{o} + \frac{RT_{M}^{o^{2}}}{\Delta H} (\Delta V_{EX}) * C_{p}$$

where T_M is the average melting temperature in 40% PEG, T_M^o is the average melting temperature without PEG, R is the gas constant, C_p is the molar concentration of polymer, ΔH is the enthalpy of folding (-30 $^{\text{kcal}}/_{\text{mol}}$ = -5 $^{\text{kcal}}/_{\text{mol}}$ per base * 6 bases for the i-motif), and ΔV_{EX} is the calculated excluded volume. The results are given in table S1 and are in reasonable agreement with data on triplex DNA reported by Spink and Chaires (ref. 48).

<u>Table S1</u>: Calculated Excluded Volume of PEG-i-motif DNA complexes

Oligo	40% PEG-300 (L/mol)	40% PEG-600 (L/mol)	40% PEG-1500 (L/mol)	40% PEG-3350 (L/mol)
Mod1T1	0.2	0.5	3.3	7.2
Mod1T3	0.4	1.2	2.5	7.6
Mod1T10	0.6	2.2	6.8	16.3