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1 Supplementary Methods
In this section we provide extensive detail regarding the mathematical set-up and derivation of the
proposed zero-inflated factor analysis model.

1.1 Setup

Let N be the number of samples, D be the number of genes, and K be the desired number of
latent dimensions. The data is given by a high-dimensional N ×D data matrix Y = [y1, . . . ,yN ],
where yij is the level of expression (log read count) of the j-th gene in the i-th sample. The
data is assumed to be generated from a projection of a latent low-dimensional N × K matrix
Z = [z1, . . . , zN ] (K � D). In all derivations below, we use use i = 1, ..., N to index over samples
(cells), j = 1, ..., D to index over genes, and k = 1, ...,K to index over latent dimensions. Each
sample yi is drawn independently:

zi ∼ Normal(0, I), (1)
xi|zi ∼ Normal(Azi + µ,W), (2)

hij |xij ∼ Bernoulli(exp(−λx2
ij)), (3)

yij =
{
xij , if hij = 0,
0, if hij = 1, (4)

where I denotes the K × K identity matrix, A denotes a D × K factor loadings matrix, H is a
D × N masking matrix, W = diag(σ2

1, . . . , σ
2
D) is a D × D diagonal matrix, µ is a D × 1 mean

vector, and λ is the exponential decay parameter in the zero-inflation model. Note that λ is shared
across genes which reduces the number of parameters to be estimated and captures the fact that
technical noise should have similar effects across genes.

1.2 Statistical Inference

Given an observed single cell gene expression matrix Y we wish to identify model parameters Θ =
(A, σ2, µ, λ) that maximize the likelihood p(Y|θ). We do this using the expectation-maximization
(EM) algorithm. We summarize the algorithm in the box below and then describe the algebraic
details:

Algorithm 1: EM for Zero-Inflated Dimensionality Reduction
1 initialize model parameters A,µ, σ2, λ;
2 while parameters not converged do
3 E-step: given A,µ, σ2, λ, compute p(Z,X0|Y) and E[Z], E[ZZT ], E[X0], E[X2

0], E[X0Z]
where X0 is the subset of X where corresponding elements in Y are zero;

4 M-step: compute analytic updates for A,µ, σ2 and optimize λ numerically;
5 end

We denote the value of the parameters at the n-th iteration, Θn, as the value that maximizes the
expected value of the complete log likelihood p(Z,X,H,Y) under the conditional distribution over
the latent variables given the observed data and the parameters at the last iteration. Computing
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the value of the parameters at each iteration requires two steps: the expectation step (E-step)
and the maximization step (M-step). In the E-step, we derive an expression for the complete
log likelihood p(Z,X,H,Y|Θn) and compute all necessary expectations under the distribution
p(Z,X,H|Y,Θn−1). In the M-step, we maximize the expected value of the complete log likelihood
with respect to Θn.

1.2.1 Complete data log-likelihood

The complete data likelihood is given by:

p(Z,X,H,Y|Θ) =
N∏
i=1

P (zi)p(xi|zi)p(hi|xi)p(yi|hi,xi), (5)

=
N∏
i=1

p(zi) p∏
j=1

p(xij |zi)p(hij |xij)p(yij |xij , hij)

 (6)

There are two different cases to consider: yij 6= 0, hij = 0, and yij = 0, hij = 1. Note the case
where yij = 0, hij = 0 has probability zero because for yij = 0 when hij = 0 we must have xij = 0,
which means that hij = 1 with probability exp(−λx2

ij) = 1. The case where yij 6= 0, hij = 1 has
probability zero because hij = 1→ yij = 0. Thus,

p(Z,X,H,Y|Θ) =
N∏
i=1

p(zi) p∏
j=1

p(xij |zi)p(hij |xij)p(yij |xij , hij)

 , (7)

=
N∏
i=1

p(zi) ∏
j:yij=0

p(xij |zi)p(hij = 1|xij)
∏

j:yij 6=0
p(xij = yij |zi)p(hij = 0|xij)

 (8)

Taking the log of this and substituting in the expressions from the generative model yields the
log likelihood (x̃i = Azi + µ):

ln p(Z,X,H,Y|Θ) ∝ −1
2

N∑
i=1

zTi zi

+
N∑
i=1

 ∑
j:yij=0

{
−(xij − x̃ij)2

2σ2
j

− 1
2 log σ2

j − λx2
ij

}
+

N∑
i=1

 ∑
j:yij=0

{
−(yij − x̃ij)2

2σ2
j

− 1
2 log σ2

j + ln(1− exp(−λy2
ij))
}

1.2.2 E-step

The E-step requires us to compute expectations for zik, z2
ik, xij , x

2
ij , zijzik, and xijzik under the

conditional distribution p(zi,xi|yi,Θ). We use yi+ to denote the elements of yi that are non-zero
and yi0 to denote the elements of yi that are zero (similarly for xi). We are only interested in the
distributions over xi0, since xi+ is effectively observed through yi; thus, we need the distribution
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p(zi,xi0|yi):

p(zi,xi0|yi) = p(zi,xi0|yi0,yi+), (9)
∝ p(yi0, zi,xi0|yi+), (10)
= p(zi,xi0|yi+)p(yi0|xi0) (11)

The second term is easy to compute since we have p(yi0|xi0) = exp(−λx2
i0). Thus we can

compute p(zi,xi0|yi+) as follows. We know the prior distribution p(zi,xi) is a multivariate normal
with prior mean µ(p) given by the vector of length (K +D)

µ(p) =
(

0
µ

)
(12)

where the upper 0 denotes the first K entries and the µ denotes the last D entries. The prior
covariance Σ(p) is given by the (K +D)× (K +D) matrix

Σ(p) =
(
I AT

A AAT + W

)
(13)

In order to obtain the distribution of zi,xi0 conditional on xi+ = yi+ we use the fact that the
conditional distribution of a multivariate normal is also a multivariate normal with mean µc and
covariance Σc given by:

µc = µ
(p)
0 + Σ(p)

0+(Σ(p)
++)−1(yi+ − µ

(p)
+ ), (14)

Σc = Σ(p)
00 −Σ(p)

0+(Σ(p)
++)−1Σ(p)

+0 (15)

where µ
(p)
+ denotes the entries of µ(p) corresponding to xi+, and µ

(p)
0 denotes the other entries;

partition Σ(p) similarly, e.g. Σ(p)
0+ is the sub-matrix of Σ(p) formed from the rows whose indices are

given by the indices where yi is zero and columns whose indices are given by the indices where yi
is non-zero.

Thus, p(zi,xi0|yi) is also is a multivariate normal distribution with mean

(Σ−1
c + 2λIx)−1Σ−1

c µc (16)

and covariance

(Σ−1
c + 2λIx)−1 (17)

where Ix is the diagonal matrix with ones on diagonal elements corresponding to entries of xi0 and
zeros everywhere else. Although these formulae involve inverses of high-dimensional matrices, the
expressions can be simplified such that no high-dimensional inversions are required; we describe
how to do this in a later section.
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1.2.3 M-step

In the M-step we first update A and µ; then we update W, whose value depends on A and µ;
then we update λ. All updates are analytic except for λ which we optimize numerically. We want
to maximize the expected value of the complete data log-likelihood with respect to the parameters.
Collecting the terms that contain µj and setting d

dµj
= 0 yields

µj = 1
N

[ ∑
i:yij=0

(
E[xij ]−

K∑
k=1

ajkE[zik]
)

+
∑

i:yij>0

(
yij −

K∑
k=1

ajkE[zik]
)]

(18)

Doing the same for ajk yields

ajk = 1∑N
i=1E[z2

ik]

[ ∑
i:yij=0

(
E[xijzik]− µjE[zik]−

∑
k′ 6=k

ajk′E[zikzik′ ]
)

+

∑
i:yij>0

(
YijE[zik]− µjE[zik]−

∑
k′ 6=k

ajk′E[zikzik′ ]
)]

(19)

The optimal value for µj depends on aj1, aj2, ..., ajK and vice versa. We can express these con-
straints as a matrix equation for each j and solve them for each j independently. We have
Bjuj − cj = 0, where Bj is a (D + 1) × (D + 1) matrix and uj and cj are vectors of length
(D + 1):

uj =


aj1
aj2
...

ajD
µj

 (20)

Bj =


1

∑
i
E[zi1zi2]∑
i
E[z2

i1] . . .

∑
i
E[zi1]∑

i
E[z2

i1]∑
i
E[zi2zi1]∑
i
E[z2

i2] 1 . . .

∑
i
E[zi2]∑

i
E[z2

i2]
...

... . . . ...
1
N

∑
iE[zi1] 1

n

∑
iE[zi2] . . . 1


(21)

cj =



∑
i:yij =0 E[xijzi1]+

∑
i:yij >0 yijE[zi1]∑

i
E[z2

i1]∑
i:yij =0 E[xijzi2]+

∑
i:yij >0 yijE[zi2]∑

i
E[z2

i2]
...

1
N

(∑
i:yij=0E[xij ] +

∑
i:yij>0 yij

)


(22)
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Having solved for µj and aj1, aj2, ..., ajK , we use the updated values to update σ2
j . Defining

mij =
∑K
k=1 ajkzik + µj , we have

σ2
j = 1

N

( ∑
i:yij=0

(E[x2
ij ]− 2E[xijmij ] + E[m2

ij ]) +
∑

i:yij>0
(y2
ij − 2yijE[mij ] + E[m2

ij ])
)

(23)

This expression is very similar to the expression for the variance in factor analysis, but with
yij replaced with the expected value of xij for zero values of yij . This makes sense because when
yij is zero, xij is unobserved, but xij is otherwise equal to yij . We note that constraining all σ2

j to
be equal yields zero-inflated probabilistic principal components analysis rather than zero-inflated
factor analysis: we have

σ2 = 1
ND

∑
j

( ∑
i:yij=0

(E[x2
ij ]− 2E[xijmij ] + E[m2

ij ]) +
∑

i:yij>0
(y2
ij − 2yijE[mij ] + E[m2

ij ])
)

(24)

We then optimize λ numerically, and the M-step is complete.

1.3 Fast linear algebra implementations

In the E-step, our goal is to compute the mean and covariance for the distribution p(Zi, Xi0|Yi).
These are given by

(Σ−1
c + 2λIx)−1Σ−1

c µc (25)
(Σ−1

c + 2λIx)−1 (26)

These computations are potentially expensive because they involve inverting D ×D matrices,
and matrix inversion has cubic complexity. We show that it is possible to evaluate these expressions
without computing the inverse of any D × D matrix, which greatly decreases the runtime of our
algorithm.

We first simplify (Σ−1
c + 2λIx)−1 using the Kailath variant of the Woodbury identity which

yields

(Σ−1
c + 2λIx)−1 = Σc − 2λΣc(I + 2λIxΣc)−1IxΣc (27)

Thus, we can write the mean and covariance of p(Zi, Xi0|Yi) as

(I− 2λΣc(I + 2λIxΣc)−1Ix)µc (28)
Σc − 2λΣc(I + 2λIxΣc)−1IxΣc (29)

These expressions contains the inverse of (I + 2λIxΣc). We use the block matrix inversion
formula to compute this, which yields

(I + 2λIxΣc)−1 =
(

I 0
−(I + 2λΣxx)−12λΣxz (I + 2λΣxx)−1

)
(30)

where Σxx,Σxz correspond to the sub matrices of Σc corresponding to the x and z indices. Thus,
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we need to compute the inverse of I + 2λΣxx. Given the formula for Σc, we have

(I + 2λΣxx) = I + 2λ(Σ(p)
00 −Σ(p)

0+Σ(p)−1
++Σ(p)

+0) (31)

= 2λ(Σ′00 −Σ(p)
0+Σ(p)−1

++Σ(p)
+0) (32)

where the 0 and + subscripts denote the indices of xi which correspond to zero and non-zero entries
in yi, respectively, and Σ′00 = Σ(p)

00 + 1
2λI.

We can invert this expression by applying another form of the Woodbury formula:

(E + CBCT )−1 = E−1 − E−1C(B−1 + CTE−1C)−1CTE−1 (33)

with E = Σ′00, B = −Σ−1
++, C = Σ0+. This yields

(Σ′00 −Σ(p)
0+Σ(p)−1

++Σ(p)
+0)−1 = Σ′−1

00 − Σ′−1
00 Σ(p)

0+(−Σ(p)
++ + Σ(p)

+0Σ′−1
00 Σ(p)

0+)−1Σ(p)
+0Σ′

−1
00 (34)

= Σ′−1
00 −Σ′−1

00 Σ(p)
0+(−Σ(p)

++ + A+(AT
0 Σ′−1

00 A0)AT
+)−1Σ(p)

+0Σ′
−1
00 (35)

where A0 and A+ denote the rows of A corresponding to zero and non-zero entries of yi, respec-
tively.

We can compute the inverse (−Σ(p)
++ + A+(AT

0 Σ′−1
00 A0)AT

+)−1 by applying the Woodbury for-
mula with E = −Σ(p)

++, B = AT
0 Σ′−1

00 A0, C = A+. Note that B will be K ×K, making it easy to
invert. We can invert Σ′00 and all D×D matrices with the form AAT +E (where A is skinny and
E is diagonal) by noting that

(AAT + E)−1 = E−1 − E−1A(I +ATE−1A)−1ATE−1 (36)

which will be much faster because the inverse (I +ATE−1A) is K ×K rather than D ×D. These
simplifications allow us to avoid computing any large inverses, making the most expensive step in
the algorithm the multiplications of D ×D matrices. As a final computational speed-up, we note
that in many cases these multiplications can be avoided because the D ×D matrices are products
of two D ×K matrices, producing large decreases in runtime if an optimal multiplication order is
used. Because computations for each sample are independent, this algorithm is easily parallelizable,
and could be run on a cluster if greater speed-ups are desired.

1.4 Block ZIFA approximation

In the expectation step, we require computations that use the full conditional distribution p(zi,xi0|yi).
These computations can be unwieldy for whole transcriptome data due to the need to condition on
all genes in the data with non-zero measurement so that we can define the conditional probability
over the latent variable zi and (zero) measurements x0. In order to speed up computations for
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large datasets, we can approximate the full conditional distribution with the following:

p(z,x0,y) = p(z|x0,y)p(x0,y),

≈
M∑
m=1

p̃(z,x0,y,m),

=
M∑
m=1

p̃(z|x0,Sm ,ySm ,m)p̃(x0,Sm ,ySm |m)p(m),

where for notational convenience, we drop the subscript i indicating the cell index and conditional
dependence on other parameters. This approximation partitions the p genes into M disjoint blocks
or subsets {S1, S2, . . . , SM} such that

⋃M
m=1 Sm = {1, . . . , p}. and approximates the full joint distri-

bution as a uniform mixture (p(m) = 1/M) where the latent variable m indicates the subset under
consideration.

This approximation modifies the E-step so that expectations for each element of the latent
measurements x0 depends on a much smaller subset of the observations y. Furthermore, as each
block of data gives rise to a different prediction for the latent state z, the mixture model allows us to
effectively average over the possibilities raised by each subset. This block approximation decreases
the runtime from quadratic in the total number of genes to quadratic in the block size. We have
found that block sizes p/M ≈ 500 gives good performance. Note that the approximation allows
for trivial parallelization over blocks and cells which would boost computation speed if multiple
processing cores are available.

We do not explore the details here but future analysis would involve an examination of the
asymptotic properties of the approximation when averaging over random subsets/blocks of the
data.

1.5 Initialization of parameters

We initialize A,µ, and W using standard factor analysis: we fit a factor analysis model to Y , and
set A,µ, and W to the model parameters. To initialize λ, for each gene j, we compute the mean
of non-zero samples µ and the fraction of samples that are zero, p0; we then fit a decaying squared
exponential curve to the pairs (µ, p0), and set λ to the fitted exponential parameter.

2 Single cell data simulation
This section describes the simulation procedure used to generate simulated data for comparison of
ZIFA, PPCA and FA.

2.1 Procedure

Let Y be a p× n observed gene expression matrix for p genes and n cells and let L denote a n× 1
vector of corresponding cell type labels:

1. Perform a PCA on Y to obtain a p×D loadings matrix A, D× n scores matrix Z and p× 1
centering vector µ:

(A,Z,µ)⇐ PCA(Y, D)
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2. Perform quadratic discriminant analysis (QDA) on the subspace spanned by the top d prin-
cipal components and compute the misclassification error e:

e(d)⇐ QDA(Zd,L)

Find d such that e(d) is below 10%.

3. Generate a simulated latent measurement set:

X′ ⇐ AdZd + µ + ε

where ε is a multivariate Gaussian noise vector with zero mean and diagonal covariance matrix
where the diagonal elements are randomly drawn from Uniform(0, 1).

4. Introduce drop out events according to the double-exponential model for a given λ:

Y ′ij =
{
X ′ij , if pij > exp(−λ(X ′ij)2),
0, otherwise.

where pij ∼ Uniform(0, 1).

2.2 Preprocessing and fitting

The Pollen [1] and Usoskin [2] datasets were pre-filtered to exclude genes where more than
90% of cells had zero measurements. For the sensory neural cells from Usoskin data set, we
excluded the non-neuronal cells and only used the major four cellular classes (n = 622). For
the Pollen data, we used only single cells with greater than 500,000 reads (n = 249).
We found that d = 5 gave good classification results for both data sets (Supplementary Figure
6).
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3 Supplementary Figures

Figure 1: Single cell dataset [3] using unique molecular identifiers (UMIs). The relationship between
zero expression occurrence and expression level fits the proposed model well.
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Figure 2: Correlation between parameter estimates from the exact and block-based approximate
EM algorithms. Data was simulated according to the generative model with parameters λ = 0.05,
Aij ∼ N(0, 1), µj ∼ N(6, 1) and σ2

j ∼ U(0, 1) with n = 200 and p = 500. A block size of 100 used
for the approximate algorithm. Compute time taken for 5 EM iterations was 28 and 117 seconds
for the block-based and exact EM algorithms respectively.
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Figure 3: Performance of dimensionality reduction methods on simulated data using (A) linear
decay 1− λµ0 and (B) missing at random 1− λ zero-inflation models.
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Figure 4: Performance of dimensionality reduction methods on simulated data using a squared-
error metric, with lower scores denoting superior performance: (A) double-exponential decay, (B)
linear decay 1− λµ0 and (C) missing at random 1− λ zero-inflation models.
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Figure 5: Distribution of average dropout rates over the random 500-gene subsets sampled from
the Pollen [1] and Usoskin [2] data sets.
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