Supporting Information for:

Accessing Ni(III)-Thiolate versus Ni(II)-Thiyl Bonding in a Family of Ni-N₂S₂ Synthetic Models of NiSOD

Ellen P. Broering,[†] Stephanie Dillon,[‡] Eric M. Gale, [†] Ramsey A. Steiner, [†] Joshua Telser, [§] Thomas C. Brunold, [‡] and Todd C. Harrop^{*,†}

[†]Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States

[‡]Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States

[§]Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States

*E-mail: <u>tharrop@uga.edu</u>

Table of Contents:

Crystallographic Data	S3-S5
Table S1. Summary of crystallographic data for 1, 2 and 4.	S3
Figure S1. Representation of the NiN_2S_2 planes of 2 and 4 .	S4
Chart S1. Bond distances of S_{exo} ligand in 2 and 4 and comparisons.	S 5
Electrochemistry	S 6
Figure S2. CV of 4 in DMF at RT.	S6
Figure S3. CV of 2 and 3 in DMF at RT.	S6
EPR	S7-S9
Table S2. EPR Comparison of Ni(III) Complexes and Legend.	S7-S9
Reactivity	S10-S11
Chart S2. Workup flowchart for the reaction of 3^{ox} with KO ₂ in DMF at RT.	S10
Figure S4. ESI-MS (negative mode) of the Et_2O -soluble portion from Chart S2.	S11
Spectroscopic Characterization of Complexes 2-5	S12-S19
Figure S5. ¹ H NMR of 2.	S12
Figure S6. High Resolution ESI-MS (negative mode) of 2.	S13
Figure S7. ¹ H NMR of 3.	S14
Figure S8. High Resolution ESI-MS (negative mode) of 3.	S15
Figure S9. ¹ H NMR of 4.	S16
Figure S10. High Resolution ESI-MS (negative mode) of 4.	S17
Figure S11. ¹ H NMR of 5.	S18
Figure S12. High Resolution ESI-MS (negative mode) of 5.	S19

Parameters	1	2	4
Formula	$C_{32}H_{32}N_8Ni_4O_4S_4\\$	$C_{22}H_{34}N_4NiOS_2$	$C_{22}H_{34}N_4NiOS_2$
Formula weight	955.70	493.36	493.36
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	<i>P</i> 2(1)/n	<i>P</i> 21/c
Crystal color, habit	Red	Red, blade	Red, blade
<i>a</i> , Å	19.4038(19)	11.5155(19)	20.0499(11)
b, Å	13.7950(14)	10.0686(16)	11.8010(7)
<i>c</i> , Å	15.5713(16)	20.095(3)	20.4272(13)
α, deg	90	90	90
β , deg	126.8520(10)	92.038(2)	100.585(1)
γ, deg	90	90	90
V, Å ³	3335.2(6)	2328.4(7)	4751.0(5)
Ζ	4	4	8
$\rho_{calcd,} g/cm^3$	1.903	1.407	1.379
Т, К	100(2)	100(2)	100(2)
abs coeff, μ (MoK α), mm ⁻¹	2.528	1.034	1.014
θ limits, deg	1.97-25.99	2.01-30.03	2.002-30.519
total no. of data	19261	34465	75036
no. of unique data	3274	6815	14491
no. of parameters	263	271	541
GOF of F ²	1.080	1.023	1.021
R ₁ , ^[a] %	0.0393	0.0378	0.0371
wR ₂ , ^[b] %	0.1031	0.0873	0.0959
max, min peaks, $e/Å^3$	0.9280, 0.7029	0.420, -0.497	0.696, -0.651

Table S1. Summary of crystal data and intensity collection and structure refinement parameters for [Ni₄(nmp)₄] (**1**), (Et₄N)[Ni(nmp)(SPh-*o*-NH₂)] (**2**), and (Et₄N)[Ni(nmp)(SPh-*p*-NH₂)] (**4**).

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}$

Figure S1. Schematic representation of the NiN₂S₂ plane for $(Et_4N)[Ni(nmp)(SPh-o-NH_2)]$ (2) and $(Et_4N)[Ni(nmp)(SPh-p-NH_2)]$ (4) and deviations of each atom from the weighted least-square plane. N2, N1, and S1 represent the donor atoms derived from the nmp²⁻ ligand, whereas S2 originates from the exogenous S donor (S_{exo}).

Chart S1. *Top*: Relevant bond distances of the S_{exo} ligand in the anions of **2** and **4**. *Bottom*: Same parameters for a structurally-characterized Ni(II)-N,S-coordinated o-iminothiosemiquinonate (see J. Am. Chem. Soc. **2001**, *123*, 10012) and the calculated bond lengths of the phenylthiyl radical and phenylthiolate anion (ROHF/3-21G*, see J. Phys. Chem. **1992**, *96*, 5344).

Figure S2. CV of an 8 mM solution of **4** in DMF at RT (glassy carbon working electrode, 0.1 M n Bu₄NPF₆ as supporting electrolyte, 100 mV/s scan speed). Arrow shows direction of scan.

Figure S3. CV of 8 mM solutions of **2** (left) and **3** (right) in DMF at RT (glassy carbon working electrode, 0.1 M n Bu₄NPF₆ as supporting electrolyte, 100 mV/s scan speed). Arrow shows the direction of the scan.

Complex	g values: [max,	Ground state	Reference			
	mid, min], avg	assignment ^a				
cis-N2S2 donor set, N3S2 donor set ^b						
$[Ni(nmp)(SPh-o-NH_2-p-CF_3)]$	[2.132, 2.028,	(d_{2}^{-1})	this work			
(3^{ox})	2.004], 2.055					
[Ni(emb)] ⁻	[2.29, 2.11, 2.04],	uncertain	Inorg. Chem. 1987,			
	2.15		26, 3645.			
[Ni(ema)] ⁻	[2.23, 2.18, 2.01],	d^{1}	Inorg. Chem. 1991,			
	2.14	<i>z</i> ²	30, 734.			
[Ni(phma)] ⁻	[2.20, 2.17, 2.01],	d_{2}^{1}	Inorg. Chem. 1991,			
	2.13	<i>z</i> ²	30, 734.			
[Ni(emi)]	[2.44, 2.27, 1.96],	uncertain	Inorg. Chem. 1991 ,			
	2.22		30, 734.			
[Ni(phmi)] ⁻	[2.55, 2.14, 2.00],	uncertain	Angew. Chem. Int.			
	2.23		Ed. 1998, 37, 260			
[Ni(phmi)(py)] ⁻	[2.313, 2.281,	d. ¹				
[()	2.000], 2.198	<i>z</i> ²				
$[Ni(ema):(CH_2)_2]^-$	[2 36 2 23 2 01]	d^{-1}	Inorg Chem 2007			
	2 20	u_{z^2}	46 7536			
$[Ni(L_1)]$	[2,26,2,19,2,01]	d 1	Inorg Chem 2014			
	2 15	u_{z^2}	53 6512			
$[Ni(I)(im)]^{+c}$	[2,315, 2,177	d^{-1}	Inorg Chem 2010			
	2 0291 2 174	u_{z^2}	49 6399			
S4 donor set ^{d} 54 donor set ^{d}						
[Ni(nbdt)]	[2 14 2 05 2 05]	uncertain	J Am Chem Soc			
	2.08	uncertain	1990 <i>112</i> 3218			
$[Ni(mnt)_{2}]^{-}$	[2 14 2 04 1 99]	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} g$	Inorg Chem 1998			
	[2.14, 2.04, 1.77],	$(a_{xz})^{\circ}$	37 1361			
$[Ni(S,C,M_{2}),1]^{-}$	[2 118 2 0/1	(11)g	Inorg Cham 2001			
	2.001 2.053	$(a_{xz})^{\circ}$	100 g. Chem. 2001, 10 1257			
[N](S(NH)CH) 1	[2.000], 2.000	uncertain	$I_{Am} Cham Soc$			
$[101(3(1011)C_{6}114)_{2}]$	2.120, 2.020,	uncertain	1067 80 2866			
trans_N2S/ dopor sot	2.005], 2.055		1707, 07, 2000.			
11234 units $1e^{e}$	[2 127 2 127	7]	I Am Cham Soc			
	[2.157, 2.157, 2.020]	d_{z^2}	J. Am. Chem. Soc.			
Né donon sot	2.030], 2.104		1990, 112, 2933.			
	[2 170 2 170	7 1	Inona Chan 1070			
$[1N1(H_3U_3a)(1NH_3)_2]$	$[2.1/\delta, 2.1/\delta, 2.1/\delta]$	d_{z^2}	<i>Inorg. Chem.</i> 1978 ,			
	2.019, 2.125	1	1/, 1030.			
$[N1(Me_2[14]aneN_4)(NCO)_2]$	[2.169, 2.169,	d_{z^2}	Inorg. Chem. 1973,			
	2.055], 2.131		12, 1.			

Table S2. EPR parameters for Ni(III) coordination complexes with $N_x S_y$ donor sets relevant to the present study.

Ligand abbreviations: ema = N,N'-ethylenebis-2-mercaptoacetamide; (ema)·(CH₂)₃ = N,N'ethylenebis(2-propylmercaptoacetamide); emb = N,N'-ethylenebis(*o*-mercaptobenzamide); emi = N,N'-ethylenebis-2-mercaptoisobutyramide; H₃G₃a = trianion (i.e., mono-H) of tripeptide glycylglycylglycinamide; im = imidazole; L = dianion of 2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1diphenylethanethiol); L₁ = trianion of N-(2-mercapto-2-methylpropanoyl)-N'-(2-mercapto-2methylpropyl)-1,2-diaminoethane; Me₂[14]aneN₄ = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradecane; mnt = dianion of maleonitriledithiolate (S₂C₂(CN)₂²⁻); nbdt = dianion of norbornane-2,3-dithiolate; nmp = dianion of N-(2-mercaptoethyl)picolinamide); pdtc = dianion of pyridine-2,6-bis(thiocarboxylate); phma = N,N'-1,2-phenylenebis-2-mercaptoacetamide); phmi = tetraanion of N,N'-1,2-phenylenebis(2-sulfanyl-2-methylpropionamide); py = pyridine; S(NH)C₆H₄)₂⁻ = dianion of *o*-amidothiophenolate.

^{*a*} As determined in the original work, parentheses indicates a ground state that is extensively delocalized onto the ligands, as opposed to being largely Ni-3*d*-centered. For a detailed discussion of 3^{ox} , see the main text.

^b In a number of cases for these four-coordinate N2S2 donor set complexes, imine N donor base (typically pyridine or imidazole) was added which coordinates on one axial position and gives a characteristic triplet hyperfine splitting (¹⁴N, I = 1) at g_{\min} , indicating that this corresponds to the molecular z direction (i.e., so that this is g_z) and that the ground state is $d_{z^2}^{-1}$; however, a shift in the ground state may have occurred with base binding (e.g., for pyridine binding to [Ni(emi)]⁻). Such EPR results of axial base binding are not included here, except for the case of [Ni(phmi)]-, as a representative example, and the last member of this series, as explained in footnote c.

^c For this complex, no formal Ni(III) species with an N2S2 donor set was observed. Upon oxidation of the four-coordinate Ni(II) parent compound, [Ni(L)] (S2N2 donor set), a diamagnetic di-Ni(III) complex is formed; however, addition of excess imidazole to this complex leads to formation of mononuclear [Ni(L)(im)]⁺, which has a $d_{z^2}^{-1}$ ground state as supported by extensive computational analysis (calculated spin density on Ni alone = 82%; calculated g = [2.252, 2.199, 2.071]).

^d The electronic structure of such square-planar S4 donor set bis-dithiolato complexes has historically been the source of much controversy (see *Inorg. Chem.* **2011**, *50*, 9741; *Chem.-Eur. J.* **2007**, *13*, 2783). Among many examples, the dimethylthiolene complex listed herein has been thoroughly analyzed (see *Inorg. Chem.* **2001**, *40*, 4257; *Chem.-Eur. J.* **2003**, *125*, 9158). The electronic structure of the nbdt complex has not been so analyzed (and that its reported EPR is axial is unexpected), but may be similar to the mnt complex; the nbdt complex does not coordinate axial bases, in contrast to those with more unambiguous d_{z^2} ground states (e.g., the (ema)·(CH₂)₃, emb, and emi complexes, and the pdtc complex with its "built-in" axial imino N- donors). Its ground state was given as $\left(d_{x^2-y^2}^{-1}\right)$, but this seems unreasonable in light of subsequent experimental and theoretical studies on such systems.

^{*e*} This 6-coordinate complex has a *trans*-N2S4 donor set. Hyperfine coupling from two equivalent, axial ¹⁴N ligands was well resolved at both g_{\perp} and g_{\parallel} . A complex enriched in ⁶¹Ni (I = 3/2) was also prepared and all evidence support a d_{z^2} ground state.

^{*f*} These 6-coordinate complexes with non-redox active ligands are classic examples of Ni(III) with $d_{z^2}^{-1}$ ground state. The tripeptide complex has equivalent, *trans* ammine ligands which give rise to resolved ¹⁴N hyperfine coupling at g_{\parallel} ; the tetraaza macrocycle complex has equivalent, *trans* N-cyanato ligands; the EPR data is for powder, hence no hyperfine coupling was resolved.

^g The coordinate system used by Huyett *et al.* for the mnt complex was defined so that the *z* axis was perpendicular to the molecular plane, and the *y* axis bisected the chelate rings with the *x* axis between the rings; the later model of Lim *et al.*, which is used here, defined the *x* axis as bisecting the chelate ring and the *y* axis bisecting the S-Ni-S angle external to the chelates. In the more recent calculations, those for the dimethyldithiolene, the unpaired spin is only partially (25%; with 60% on the S atoms) on Ni (in $3d_{xz}$ AO; $5b_{2g}$ using D_{2h} symmetry) (see *J. Am. Chem. Soc.* **2003**, *125*, 9158). The calculated *g* values for this complex are: g = [2.115, 2.040, 1.969], in excellent agreement with experiment.

Chart S2. Workup flowchart for the reaction of 3^{ox} with KO₂ in DMF at RT.

A 3 mL DMF solution of **3** (56.5 mg, 0.101 mmol) was mixed with CAN (55.3 mg, 0.101 mmol) to generate the green-colored 3^{0x} . To this solution was added a ~2 mL DMF solution of KO₂ (7.8 mg, 0.11 mmol) solubilized with 18C6 (104.1 mg, 0.3938 mmol). Upon addition of KO₂, the green color of 3^{0x} immediately changed to brown-red. This solution was allowed to mix at RT for ~5 min. DMF was then removed via short-path vacuum distilation and the dark residue was worked-up as follows:

Figure S4. Low resolution ESI-MS (negative mode) of the Et_2O -soluble portion from Chart S2. Middle and bottom represent a zoom-in of the *m/z* 224.9 and 239.9 peaks. Theoretical fit on the bottom.

Figure S5. ¹H NMR spectrum of **2** in CDCl₃ containing 0.05% v/v TMS at RT. Inset shows expanded aromatic region. Residual protio solvent (7.26 ppm), H₂O (1.61 ppm), and TMS (0.00 ppm) are present. A minor amount of DMF (8.02, 2.96, 2.88 ppm) and MeCN (2.03 ppm) from workup are also present.

Figure S6. *Top*: High resolution ESI-MS (negative mode) of the anion of **2** $[M-Et_4N]^-$ in MeCN at RT. *Bottom*: Theoretical MS for the anion of **2**.

Figure S7. ¹H NMR spectrum of **3** in CD₃CN at RT. Inset shows expanded aromatic region. Residual protio solvent (1.94 ppm) and H₂O (2.13 ppm) are present. A minor amount of DMF (7.92, 2.89, 2.77 ppm) and Et₂O (3.42, 1.12 ppm) from workup are also present.

Figure S8. *Top*: High resolution ESI-MS of the anion of **3** $[M-Et_4N]^-$ in MeCN at RT. *Bottom*: Theoretical MS for the anion of **3**.

Figure S9. ¹H NMR spectrum of **4** in CDCl₃ containing 0.05% v/v TMS at RT. Inset shows expanded aromatic region. Residual protio solvent (7.26 ppm), H₂O (1.66 ppm), and TMS (0.00 ppm) are present. A minor amount of DMF (8.02, 2.95, 2.88 ppm), THF (3.74, 1.85 ppm), and MeCN (2.03 ppm) from workup are also present.

Figure S10. *Top*: High resolution ESI-MS of the anion of **4** $[M-Et_4N]^-$ in MeCN at RT. *Bottom*: Theoretical MS of the anion of **4**.

Figure S11. ¹H NMR spectrum of **5** in CD₃CN at RT. Inset shows expanded aromatic region. Residual protio solvent (1.94 ppm) and H_2O (2.16 ppm) are present. A minor amount of THF (3.64, 1.80 ppm) and Et₂O (3.42, 1.12 ppm) from workup is also present.

Figure S12. *Top*: High resolution ESI-MS of the anion of **5** [M-Na]⁻ in MeCN at RT. *Bottom*: theoretical MS of the anion of **5**.