Supporting Online Material

Inhibitory mechanism of the $Q\beta$ lysis protein A_2

C. Reed¹, C. Langlais^{1†}, V. Kuznetsov², and R. Young^{1*}

¹Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128

²Department of Chemistry, Texas A&M University, College Station, Texas 77843

[†]**Present address:** Rho, Inc., 6330 Quadrangle Drive, Chapel Hill, NC 27517

*Corresponding author.

Mailing address: Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128

Phone: (979) 845-2087

Fax: (979) 862-4718

E-mail: ryland@tamu.edu

Supplementary Methods

Plasmid construction. For yeast-two-hybrid analyses, plasmids pGBKT7-A2 and pGADT7-murA/murAL^{138Q} were amplified in XL-1 Blue. pGBKT7-A₂ was cloned from a cDNA copy of the $Q\beta$ RNA reverse transcribed using the M-MLV Reverse Transcriptase according to manufacturer's instructions (Ambion). A_2 was amplified by PCR using A₂KpnI-NdeI-For (GTATAAGAGGTACCACATATGCCTAAATTACC) and A₂Rev-BamHI (GCAGCCGGATCCAGTTTCA) primers. The PCR product was inserted into pGBKT7 (Clontech) at the BamHI and an Ndel restriction site that was introduced upstream of the *cmyc* epitope tag by site-directed mutagenesis, described previously (Smith et al., 1998), with the following primers: pGBKT7-Ndel-up-FOR (GGGCGAGCCGCCCATATGGAGGAGC) and pGBKT7-Ndel-up-Rev (CTGCTCCTCCATATGGGCGGCTCGCC). pGADT7-murA/murA^{L138Q} was similarly constructed by inserting *murA/murA^{L138Q}* amplified from pZE12-murA/murA^{L138Q} by PCR with the primers Ncol-murA-FOR (TTGGTTCCATGGATAAATTTCGTG) and BamHImurA-REV (TATTATTCTAGAGGATCCGCTCTCAGACGATTAACCAC) into the Ncol and BamHI sites of pGADT7 (Clontech). Construction of pZE12-murA has been previously described (Bernhardt et al., 2001). Alleles of murA* used in the MurA bioassay were constructed by site-directed mutagenesis (Smith et al., 1998) into pZE12-murA with primers listed in Supplementary Table S2. For purification, an oligohistidine tag (G₂H₆G₂) was adjoined to the C-terminus of murA by site-directed PCR mutagenesis. To generate pZA31-murA^{Bs}, murAA (murA^{Bs}) was cloned out of Bacillus subtilis W23 with the following primers: KpnI-NdeI-BsMurA-For ATATATGGTACCCATATGGAAAAAAT and Xbal-BamHI-BsMurA-Rev GAGTGGTCTAGAGGATCCTTATGCAT and ligated into pZA31 (Lutz & Bujard, 1997) at the KpnI and XbaI restriction sites. This plasmid has a P_{Ltet0-1} promoter which is constitutively on in a *tetR*⁻ background. The MBP-A₂ fusion vector, pETMBP-A₂, was constructed by amplifying the A_2 gene via PCR, as described above, using KpnI-NdeI-For GTATAAGAGGTACCACATATGCCTAAATTACC and A₂Rev-BamHI GCAGCCGGATCCAGTTTCA primers. The PCR product was digested with Ndel and BamHI and ligated into p202 (pET28b-MBP vector with a TEV protease cleavage site, kindly provided by Dr. Sacchettini, TAMU) similarly digested.

MurA purification. Purification of MurA bound with UDP-NAM and PEP was performed according to the purification protocol described Experimental proceedures section of the main text except the ammonium sulfate precipitation steps were removed.

Substrate analysis. Residual nucleotide binding of purified MurA was tested by denaturation and deproteinization of the sample according to the method previously described (Mizyed *et al.*, 2005). Absorbance of the sample at 260 nm was assessed. No residual nucleotide binding was observed for MurA purified with succissive ammonium sulfate precipitation steps (data not shown).

Supplementary Tables and Figures

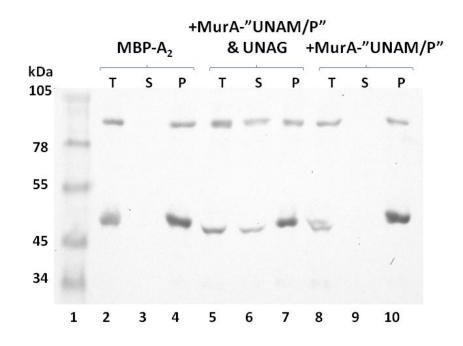

Protects	Does not Protect
No plaques	Plaques
WT (D305A)	L138Q
L111R	V87R
S127R	K88E
E130A	A119R
Q131R	P121R
G133R	V122R
T135R	I126R
K137D	E130R
L138P	I136R
E139A	L138M
E139R	L138R
E140R	V143R
G141R	I156R
K152R	N330R
H155R	F332R
V157R	M333R
D159R	P336R
K160R	M366R
V335R	T368R
R391R	H394R

Table S1. MurA^{*D305A} Q β protection assay.

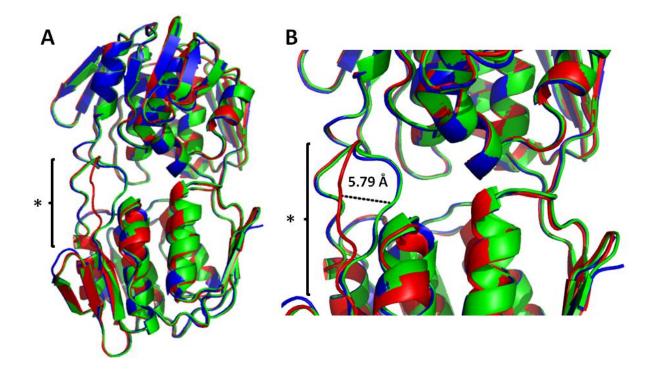
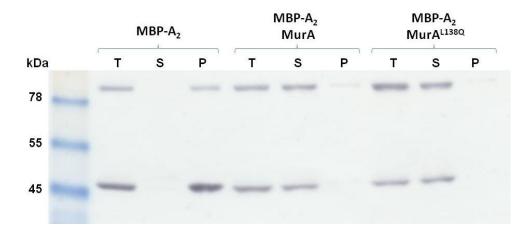
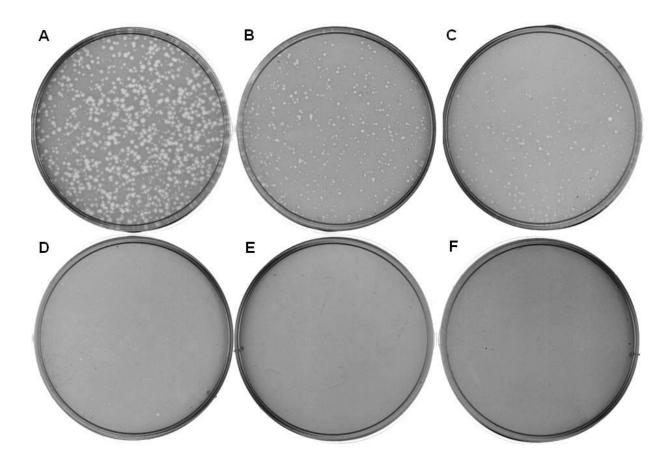
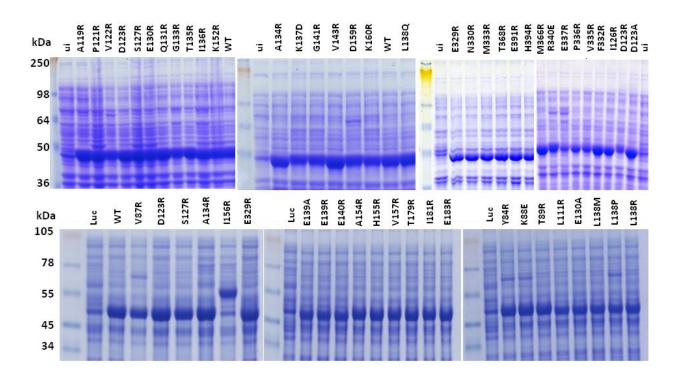

Allele (murA*) Sequence L138Q FOR: ACCATCAAACTGGAAGAAGGT REV: ACCTTCTTCCAGTTTGATGGT L138M FOR: ACCATCAAAATGGAAGAAGGT REV: ACCTCCTTCCATTTTGATGGT L138P FOR: ACCATCAAACCGGAAGAAGGT REV: ACCTCCTTCCGTTTGATGGT L138R FOR: ACCATCAAACGGGAAGAAGGT REV: ACCTCCTTCCGGTTTGATGGT L138R FOR: ACCATCAAACGGGAAGAAGGT REV: ACCTTCTTGCCGTTTGATGGT	
REV: ACCTTCTTCCAGTTTGATGGTL138MFOR: ACCATCAAAATGGAAGAAGGTREV: ACCTCCTTCCATTTTGATGGTL138PFOR: ACCATCAAACCGGAAGAAGGTREV: ACCTCCTTCCGTTTGATGGTL138RFOR: ACCATCAAACGGGAAGAAGGT	
L138MFOR: ACCATCAAAATGGAAGAAGGTREV: ACCTCCTTCCATTTTGATGGTL138PFOR: ACCATCAAACCGGAAGAAGGTREV: ACCTCCTTCCGGTTTGATGGTL138RFOR: ACCATCAAACGGGAAGAAGGT	
REV: ACCTCCTTCCATTTTGATGGT L138P FOR: ACCATCAAACCGGAAGAAGGT REV: ACCTCCTTCCGGTTTGATGGT L138R FOR: ACCATCAAACGGGAAGAAGGT	
L138PFOR: ACCATCAAACCGGAAGAAGGTREV: ACCTCCTTCCGGTTTGATGGTL138RFOR: ACCATCAAACGGGAAGAAGGT	
REV: ACCTCCTTCCGGTTTGATGGT L138R FOR: ACCATCAAACGGGAAGAAGGT	
L138R FOR: ACCATCAAACGGGAAGAAGGT	
A119R FOR: GTACGATCGGTCGTCGTCCGGTTG	
REV: CAACCGGACGACGACCGATCGTAC	
P121R FOR: CGGTGCGCGTCGTGTTGATCTAC	
REV: GTAGATCAACACGACGCGCACCG	
V122R FOR: GTGCGCGTCCGCGTGATCTACACATT	
REV: AATGTGTAGATCACGCGGACGCGCAC	
D123R FOR: GCGCGTCCGGTTCGTCTACACATTTC	
REV: GAAATGTGTAGACGAACCGGACGCGC	
I126R FOR: GATCTACACCGTTCTGGCCTCGAAC	
REV: GTTCGAGGCCAGAACGGTGTAGATC	
S127R FOR: GATCTACACATTCGTGGCCTCGAAC	
REV: GTTCGAGGCCACGAATGTGTAGATC	
E130A FOR: TCTGGCCTCGCACAATTAGGC	
REV: GCCTAATTGTGCGAGGCCAGA	
E130R FOR: CTGGCCTCCGTCAATTAGGCGCG	
REV: CGCGCCTAATTGACGGAGGCCAG	
Q131R FOR: CTGGCCTCGAACGTTTAGGCGCGAC	
REV: GTCGCGCCTAAACGTTCGAGGCCAG	
G133R FOR: CCTCGAACAATTACGTGCGACCATCAA	
REV: TTGATGGTCGCACGTAATTGTTCGAGG	
A134R FOR: AACAATTAGGCCGTACCATCAAAC	
REV: GTTTGATGGTACGGCCTAATTGTT	
T135R FOR: AATTAGGCGCGCGTATCAAACTGGA	
REV: TCCAGTTTGATACGCGCGCCTAATT	
I136R FOR: TAGGCGCGACCCGTAAACTGGAAGA	
REV: TCTTCCAGTTTACGGGTCGCGCCTA	
E139A FOR: ATCAAACTGGCAGAAGGTTAC	
REV: GTAACCTTCTGCCAGTTTGAT	
E139R FOR: GCGACCATCAAACTGCGTGAAGGTTA	
REV: CGTAACCTTCACCGAGTTTGATGGTC	

Table S2. Primers for construction of MurA* alleles.


K137D	FOR: GCGACCATCGATCTGGAAGAAGG
	REV: CCTTCTTCCAGATCGATGGTCGC
G141R	FOR: AACTGGAAGAACGTTACGTTAAA
	REV: TTTAACGTAACGTTCTTCCAGTT
V143R	FOR: GAAGAAGGTTACCGTAAAGCTTCCG
	REV: CGGAAGCTTTACGGTAACCTTCTTC
K152R	FOR: GATGGTCGTTTGCGTGGTGCACATATC
	REV: GATATGTGCACCACGCAAACGACCATC
H155R	FOR: GAAAGGTGCACGTATCGTGATGG
	REV: CCATCACGATACGTGCACCTTTC
D159R	FOR: ATCGTGATGCGTAAAGTCAGCG
	REV: CGCTGACTTTACGCATCAC
K160E	FOR: GTGATGGATGAAGTCAGCGTT
	REV: AACGCTGACTTCATCCATCAC
D305A	FOR: GCATTCCCGACCGCTATGCAGGCC
	REV: GGCCTGCATAGCGGTCGGGAATGC
E329R	FOR: GAAACGGTCTTTCGTAACCGCTTTATGC
	REV: GCATAAAGCGGTTACGAAAGACCGTTTC
N330R	FOR: CGGTCTTTGAACGTCGCTTTATGC
	REV: GCATAAAGCGACGTTCAAAGACCG
E332R	FOR: CTTTGAAAACCGCCGTATGCATGTGCC
	REV: GGCACATGCATACGGCGGTTTTCAAAG
M333R	FOR: GAAAACCGCTTTCGTCATGTGCCAGAG
	REV: CTCTGGCACATGACGAAAGCGGTTTTC
V335R	FOR: CGCTTTATGCATCGTCCAGAGCTG
	REV: CAGCTCTGGACGATGCATAAAGCG
P336R	FOR: GCTTTATGCATGTGCGTGAGCTGAGCC
	REV: GGCTCAGCTCACGCACATGCATAAAGC
E337R	FOR: GCATGTGCCACGTCTGAGCCGTATGGC
	REV: GCCATACGGCTCAGACGTGGCACATGC
R340E	FOR: GAGCTGAGCGAAATGGGCGCGCACGCC
	REV: GGCGTGCGCGCCCATTTCGCTCAGCTC
M366R	FOR: CGCACAGGTTCGTGCAACCGATCTGCG
	REV: CGCAGATCGGTTGCACGAACCTGTGCG
T368R	FOR: GGTTATGGCACGTGATCTGCGTGC
	REV: GCACGCAGATCACGTGCCATAACC
R391E	FOR: CGGTGGTTGATGAAATTTATCACATCG
	REV: CGATGTGATAAATTTCATCAACCACCG
H394R	FOR: GATCGTATTTATCGTATCGATCGTGGC
	REV: GCCACGATCGATACGATAAATACGATC


Fig. S1. A₂ **does not bind the dormant complex of MurA.** Fusion cleavage analysis of A₂-MurA binding in the presence of MurA liganded to UDP-NAM (UNAM) and PEP (P). MBP-A₂ was cleaved with TEV protease. UDP-NAG (UNAG, 1 mM) was included in a reaction. Binding was assessed as A₂ solubility after centrifugation: Total fraction (T), supernatant after centrifugation (S), and pellet fraction (P). Samples were resolved on SDS-PAGE and immunoblotted with the α -A₂ antibody. MBP-A₂ has an apparent MW of 100 kDa and cleaved A₂ ~50 kDa. UNAM/P was included in quotation marks since it was previously determined that a small fraction of MurA co-purifies with these two substrates (Mizyed *et al.*, 2005, Zhu *et al.*, 2012).


Fig. S2. Substrate-dependent analyses of MurA catalytic loop conformations. (A) Overlay of *E. coli* MurA bound with UDP-NAG (Han H., unpublished; PDB entry 3KQJ; blue), UDP-NAG/PEP (Skarzynski *et al.* 1998; PDB entry 1A2N; red), and UDP-NAG/fosfomycin (Skarzynski *et al.* 1996; PDB entry 1UAE; green); (B) Enlargement of structure active site/catalytic loop in part A. Distance between Gly114 residues is displayed. The catalytic loop is highlighted with an asterisk. The RMSD value of the catalytic loop region between the three structures is 1.477 Å. Figures were generated using PyMOL (Schrödinger, 2010).

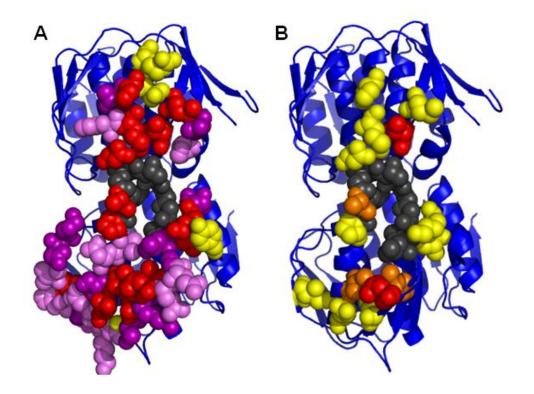

Fig. S3. A₂ **binds MurA**^{L138Q}. Fusion cleavage of MBP-A₂ was tested in the presence of UDP-NAG bound MurA and MurA^{L138Q}. Solubility of A₂ after centrifugation: Total fraction (T), supernatant after centrifugation (S), and pellet fraction (P) was assessed by Western blot that was probed with the α -A₂ antibody.

Fig. S4. MurA protection assay induction series. Protection from Q β plating is observed on induction plates of 100 μ M IPTG or greater. Q β phage and bacteria are included in agar overlay on plates containing increasing amounts of IPTG (μ M): (A) 0, (B) 12.5, (C) 25, (D) 50, (E) 100 and (F) 1000.

Fig. S5. MurA variants are expressed. TCA precipitated cells expressing MurA variants were run on SDS-PAGE. Alleles are shown above lanes. Uninduced control (ui) and Luciferase control (Luc)

Fig. S6. MurA mutant surface maps. (A) MurA mutational data. Catalytic loop displayed as grey spheres. *Rats* are colored red. Residues providing protect ≥WT are shown in purple (weaker WT induction phenotype is lighter purple). Residues that are non-functional are shown as yellow spheres. (B) Differentiation of *rat* residues. Basal level protection *rats* are displayed as red spheres. Medium protecting *rats* are colored orange. Low protecting *rats* are shown in yellow. All residues were mapped onto the MurA UDP-NAG-bound state ("closed" conformation, front view) (Han H., unpublished; PDB entry 3KQJ). Figures were generated using PyMOL (Schrödinger, 2010).

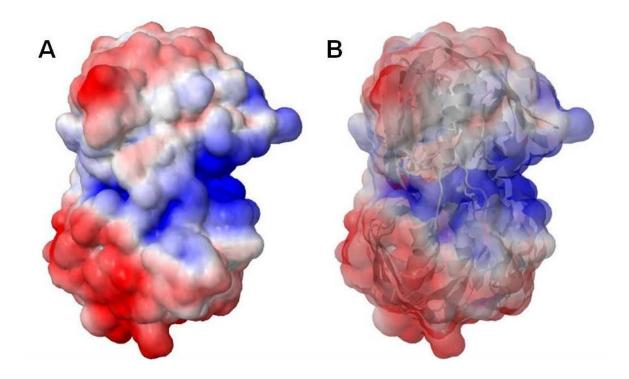


Fig. S7. The surface of MurA has negatively charged and hydrophobic characteristic. (Red) negatively charged residues, (blue) positively charged residues, and (white) hydrophobic residues. MurA tetrahedral intermediate (PDB entry 1A2N) (Skarzynski *et al.*, 1998) was used to generate figures with the online server: (http://kryptonite.nbcr.net/pdb2pqr/) (Dolinsky TJ, 2004). (A) surface view (B) transparent view

References

- Bernhardt, T. G., I. N. Wang, D. K. Struck & R. Young, (2001) A protein antibiotic in the phage $Q\beta$ virion: Diversity in lysis targets. *Science* **292**: 2326-2329.
- Dolinsky TJ, N. J., McCammon JA, Baker NA, (2004) PDB2PQR: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res.* **32**: W665-W667.
- Lutz, R. & H. Bujard, (1997) Independent and tight regulation of transcriptional units in *Escherichia coli* via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic Acids Res.* **25**: 1203-1210.
- Mizyed, S., A. Oddone, B. Byczynski, D. W. Hughes & P. J. Berti, (2005) UDP-Nacetylmuramic acid (UDP-MurNAc) is a potent inhibitor of MurA (enolpyruvyl-UDP-GlcNAc synthase). *Biochemistry* **44**: 4011-4017.
- Schrödinger, LLC, (2010) The PyMOL Molecular Graphics System, Version 0.99.
- Skarzynski, T., D. H. Kim, W. Lees, C. T. Walsh & K. Duncan, (1998) Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediated bound to the active site of the C115A mutant of MurA. *Biochemistry* 37: 2572-2577.
- Smith, D. L., D. K. Struck, J. M. Scholtz & R. Young, (1998) Purification and biochemical characterization of the lambda holin. *J. Bacteriol.* **180**: 2531-2540.
- Zhu, J.-Y., Y. Yang, H. Han, S. Betzi, S. H. Olesen, F. Marsilio & E. Schönbrunn, (2012) Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). *J. Biol. Chem.* 287: 12657-12667.