	WT			TLR9 ^{-/-}		
	Standard chow $(n = 6)$	CSAA diet $(n = 5)$	CDAA diet $(n = 8)$	Standard chow $(n = 4)$	$\begin{array}{l} \text{CSAA diet} \\ (n = 4) \end{array}$	CDAA diet $(n = 8)$
Body weight at week 0 (g)	24.2 ± 0.75	22.4 ± 0.89	23.2 ± 1.60	23.8 ± 0.96	25.0 ± 0.82 ^a	24.4 ± 0.98 ^a
Body weight at week 22 (g)	30.8 ± 0.5	41.5 ± 2.22^{b}	40.1 ± 2.76^{b}	26.8 ± 1.18	$31.5\pm2.07^{\text{a,b}}$	28.2 ± 3.34 ^a
Liver weight (g)	1.34 ± 0.16	2.40 ± 0.40^{b}	2.48 ± 0.41^{b}	1.11 ± 0.09 ^a	1.31 ± 0.33 ^a	1.23 ± 0.29 ^a
Liver weight (%)	4.38 ± 0.49	5.75 ± 0.69^{b}	6.17 ± 0.68^{b}	4.13 ± 0.19	4.14 ± 0.79 ^a	4.31 ± 0.58 ^a
Epididymal fat (g)	0.74 ± 0.36	2.59 ± 0.35^{b}	2.47 ± 0.33^{b}	0.51 ± 0.09	1.08 ± 0.16 ^{a,b}	0.89 ± 0.37 ^{a,b}
Epididymal fat (%)	2.29 ± 0.84	6.21 ± 0.58^{b}	6.17 ± 0.81^{b}	1.90 ± 0.26	3.43 ± 0.33 ^{a,b}	3.05 ± 1.00 ^{a,b}
Plasma						
T-Bil (<i>mg/mL</i>)	0.85 ± 0.66	0.90 ± 0.22	1.19 ± 1.23	0.77 ± 0.21	0.58 ± 0.34	0.76 ± 0.40
ALT (U/L)	24.7 ± 6.25	44.0 ± 10.7^{b}	$122.0 \pm 29.0^{b,c}$	13.0 ± 4.36 ^a	32.0 ± 13.3	41.1 ± 16.2 ^{a,b}
ALP (<i>U/L</i>)	118.2 ± 8.78	133.3 ± 12.2	165.9 ± 57.9	125.4 ± 16.6	126.0 ± 13.6	162.9 ± 30.8 ^c
Triglyceride (<i>mg/dL</i>)	30.8 ± 0.92	43.1 ± 13.4	$67.3 \pm 5.85^{b,c}$	22.4 ± 0.69 ^a	24.0 ± 3.15	23.2 ± 9.33 ^a
Total cholesterol (mg/dL)	66.4 ± 13.5	161.2 ± 22.9^{b}	$107.2 \pm 25.0^{b,c}$	54.2 ± 4.26	151.5 ± 12.3 ^{a,b}	70.3 ± 32.0 ^c
Free fatty acid (mmol/L)	0.29 ± 0.07	0.29 ± 0.12	0.30 ± 0.06	0.42 ± 0.05	0.35 ± 0.22 ^a	0.43 ± 0.26
Liver						
Triglyceride (<i>mg/g liver</i>)	31.0 ± 10.3	87.3 ± 19.9^{b}	$163 \pm 12.2^{b,c}$	28.0 ± 1.42	63.2 ± 9.52^{b}	83.1 ± 28.5 ^a
Total cholesterol (mg/g liver)	4.13 ± 2.40	25.5 ± 2.22^b	25.9 ± 3.29^{b}	$\textbf{2.11} \pm \textbf{1.00}$	8.39 ± 1.46^{b}	9.84 ± 4.67 ^a
Free fatty acid (μ mol/g liver)	0.56 ± 0.07	2.61 ± 0.17^{b}	2.70 ± 0.20^{b}	0.36 ± 0.33	0.69 ± 0.10	0.76 ± 0.11^a

Supplementary Table 1. Body/Liver/Fat Weight and Lipid Level in WT, TLR9^{-/-}, IL-1R^{-/-}, and MyD88^{-/-} Mice at 22 Weeks After Standard, CSAA and CDAA Diet Feeding

Note: Values are mean \pm SD.

^aSignificantly different from WT, P < .05.

 $^{\textit{b}}\textsc{Significantly}$ different from standard chow, P < .05.

 $^c\!Significantly different from CSAA, P < .05.$

Supplementary Table 1. Continued

	IL-1R ^{-/-}			MyD88 ^{-/-}	
Standard chow (n = 4)	CSAA diet $(n = 4)$	CDAA diet $(n = 8)$	Standard chow (n = 4)	CSAA diet $(n = 4)$	CDAA diet $(n = 7)$
25.0 ± 1.00	25.0 ± 0.01 ^a	24.9 ± 0.90	25.5 ± 0.71	25.0 ± 0.01 ^a	24.6 ± 1.94
26.0 ± 0.77	32.0 ± 0.57 ^{<i>a,b</i>}	$38.4 \pm 5.83^{b,c}$	25.7 ± 0.94	30.2 ± 5.42 ^a	36.8 ± 4.20^{b}
1.18 ± 0.07	$1.50 \pm 0.15^{a,b}$	$2.23 \pm 0.61^{b,c}$	0.96 ± 0.09 ^a	$1.35 \pm 0.14^{a,b}$	$2.03 \pm 0.58^{b,c}$
4.53 ± 0.22	4.67 ± 0.46^{a}	$5.72 \pm 0.84^{b,c}$	3.75 ± 0.20 ^a	4.51 ± 0.34 ^{<i>a,b</i>}	$5.44 \pm 1.02^{b,c}$
0.29 ± 0.16^{a}	1.30 ± 0.06 ^{<i>a,b</i>}	1.80 ± 0.71^b	0.20 ± 0.07 ^a	1.05 ± 0.72 ^{a,b}	$1.59 \pm 0.65^{a,b}$
1.10 ± 0.61^a	$4.06 \pm 0.18^{a,b}$	$4.55 \pm 1.41^{a,b}$	0.80 ± 0.04^{a}	3.32 ± 1.79^{a}	$4.19 \pm 1.36^{a,b}$
0.86 ± 0.20	0.90 ± 0.17	1.05 ± 0.56	1.01 ± 0.03	1.04 ± 0.42	1.16 ± 0.51
28.0 ± 7.21	39.3 ± 8.74	$59.9 \pm 14.5^{a,b,c}$	23.0 ± 2.83	28.7 ± 7.37 ^a	41.6 ± 6.21 ^{<i>a,b,c</i>}
103.0 ± 8.90 ^a	157.5 ± 66.2	214.8 ± 96.2^{b}	170.2 ± 53.2	180.1 ± 63.7	219.2 ± 27.9 ^a
22.9 ± 9.15	21.3 ± 4.08^{a}	21.8 ± 9.24 ^a	29.3 ± 3.84	17.7 ± 6.82 ^{a,b}	41.4 ± 8.86 ^{a,b,c}
55.2 ± 12.6	102.9 ± 0.59 ^{a,b}	68.6 ± 17.9 ^{<i>a,c</i>}	59.7 ± 11.4	113.5 ± 4.32 ^{a,b}	74.6 ± 14.9 ^{a,c}
0.32 ± 0.06	$0.59 \pm 0.01^{a,b}$	0.27 ± 0.08^{c}	0.35 ± 0.07	0.23 ± 0.02^b	$0.20 \pm 0.06^{a,b}$
35.6 ± 3.43	55.0 ± 14.0 ^{<i>a,b</i>}	84.4 ± 10.9 ^{<i>a,b,c</i>}	34.9 ± 4.05	46.7 ± 1.58 ^{<i>a,b</i>}	60.7 ± 39.2 ^a
3.07 ± 0.36	5.31 ± 0.23 ^{<i>a,b</i>}	6.74 ± 1.40 ^{<i>a,b</i>}	1.97 ± 0.11	5.69 ± 0.22 ^{<i>a,b</i>}	5.12 ± 2.73^{a}
0.60 ± 0.04	0.92 ± 0.56	1.07 ± 0.56^{a}	0.35 ± 0.02 ^a	0.56 ± 0.19	0.69 ± 0.33 ^a

	Standard chow	CSAA diet	CDAA diet
Total calorie (<i>kcal/g</i>)	3.41	4.27	4.33
Carbohydrates (%)	62.1	63.2	68.5
Protein (%)	24.6	20.1	17.4
Fat (%)	13.2	16.2	14.0

Supplementary Table 2. Energy Composition of Standard, CSAA, and CDAA Diets

Supplementary Table 3. Sequence of Primers Used for Real-Time Quantitative PCR

Gene	Forward	Reverse
185	AGTCCCTGCCCTTTGTACACA	CGATCCGAGGGCCTCACTA
Bambi	TGAGCAGCATCACAGTAGCA	CGCCACTCCAGCTACTTCTT
Bcl2	CTTTCTGCTTTTTATTTCATGAGG	CAGAAGATCATGCCGTCCTT
Bax	GATCAGCTCGGGCACTTTAG	TTGCTGATGGCAACTTCAAC
DGAT1	TCACCACACACCAATTCAGG	GACGGCTACTGGGATCTGA
DGAT2	GAAGATGTCTTGGAGGGCTG	CGCAGCGAAAACAAGAATAA
Collagen $\alpha 1(I)$	TAGGCCATTGTGTATGCAGC	ACATGTTCAGCTTTGTGGACC
Collagen $\alpha 1(IV)$	CACATTTTCCACAGCCAGAG	GTCTGGCTTCTGCTGCTCTT
IL-1 α	CCAGAAGAAAATGAGGTCGG	AGCGCTCAAGGAGAAGACC
IL-1β	GGTCAAAGGTTTGGAAGCAG	TGTGAAATGCCACCTTTTGA
IL-6	ACCAGAGGAAATTTTCAATAGGC	TGATGCACTTGCAGAAAACA
PAI-1	GCCAGGGTTGCACTAAACAT	GCCTCCTCATCCTGCCTAA
TGFβ1	GTGGAAATCAACGGGATCAG	ACTTCCAACCCAGGTCCTTC
TIMP1	AGGTGGTCTCGTTGATTTCT	GTAAGGCCTGTAGCTGTGCC
TNFα	AGGGTCTGGGCCATAGAACT	CCACCACGCTCTTCTGTCTAC

Supplementary Figure 1. CDAA diet-induced steatohepatitis mimics human NASH. WT mice were fed standard chow (ST, n = 6), CSAA (CS, n = 4), and CDAA (CD, n = 5) diets for 22 weeks. (*A*) Liver sections were stained with H&E, Oil Red O, TUNEL, and Sirius Red. Inflammatory cell infiltration (*arrowheads*) and ballooning hepatocytes (*arrow*) are seen in the CDAA diet group by H&E staining. *Arrows* indicate apoptotic cells in TUNEL staining. Perisinusoidal fibrosis is seen in the CDAA group by Sirius red staining. Original magnification, \times 200 for H&E and TUNEL, \times 100 for Oil Red O and Sirius red staining. (*B*) Number of TUNEL-positive cells, (*C*) Sirius red–positive area, and (*D*) NAFLD activity score were calculated. N.D, not detected. (*E*) Serum ALT level. (*F*) Hepatic mRNA levels of profibrogenic markers were determined by quantitative real-time PCR. Genes were normalized to 18S RNA as an internal control. Data represent mean \pm SD; **P* < .05, ***P* < .01; n.s., not significant.

Supplementary Figure 2. Comparable food intake in WT and TLR9 $^{-/-}$ mice. A CDAA diet intake was measured on WT and TLR9 $^{-/-}$ mice.

Supplementary Figure 3. Specific deletion of Kupffer cells, but not HSCs and sinusoidal endothelial cells, by liposomal clodronate treatment. (*A* and *B*) Liver samples were harvested 24 hours after the injection of liposomal clodronate. Kupffer cells, HSCs, sinusoidal endothelial cells were determined by immunohistochemistry for F4/80 (*A*), desmin (*B*), and CD31 (*C*). Liposomal clodronate injection completely depleted Kupffer cells, but it did not influence the number of HSCs and sinusoidal endothelial cells.

Supplementary Figure 4. Inhibition of NF- κ B activation is essential for IL-1 β -induced cell death. Inactivation of NF- κ B increased the susceptibility to IL-1 β -induced hepatocyte cell death. NF- κ B activation in hepatocytes was inhibited by adenovirus expressing IB-super-repressor (I κ B-sr). Cell death (A), ALT (B), and LDH (C) levels were examined (n = 4, each group).

Supplementary Figure 5. An effect of CpG-ODN on hepatocytes. A CpG-ODN induced neither lipid accumulation nor cell death in both normal hepatocyte (A-E) and lipid-accumulated hepatocytes (F-J). Hepatocytes were treated with 5 μ g/mL CpG-ODN (C) or non–CpG-ODN (N) for 24 hours. (A and F) Oil Red O staining, (B and G) triglyceride content in hepatocytes, (C and H) cell death, (D and I) ALT, and (E and J) LDH levels in supernatant are shown (n = 4, each group). Original magnification, ×400 (A), ×200 (F).

Supplementary Figure 6. HSCs are not activated by TLR9 ligand. (A and B) WT stellate cells were treated with 5 μ g/mL CpG-ODN (C) or non–CpG-ODN (N) for 8 hours followed by measurement of mRNA expression of profibrogenic markers by quantitative real-time PCR. (B) NF- κ B activity in response to IL-1 β was examined by the infection of adenovirus expressing NF- κ B–driven luciferase. n.s., not significant.

Supplementary Figure 7. Strong IRAK-M expression in hepatocytes isolated from the CDAA diet. (*A* and *B*) Hepatocytes were isolated from WT mice fed a CSAA or CDAA diet for 22 weeks. (*A*) IRAK-M mRNA expression was determined by quantitative real-time PCR. (B) Immunoblots of IRAK-M are shown. Significant up-regulation of IRAK-M expression in hepatocytes from mice fed the CDAA diet was observed.