
Supplementary Information

Additional Tables:

File expval.table.txt contains the list of genes that has been determined to be

differentially regulated. Since HgU133A microarray often includes multiple probesets of

a same gene, these were also included. Full dataset has been submitted to NCBI’s GEO

database under accession number GSE3268.

Row header is indicated in the first line. First column, hgu133a are the probeset

identifiers used in the microarray. X__nml and X__sqm are the calculated expression

values for normal and tumor sample of patients (respectively), where underscores (__)

represent each individual’s identification number. Symbol column contains the official

symbol for the genes. meanD column contains the mean difference in gene expression

between the tumor and cancer sample. p-val column contains the p-value of paired t-test

for the expression values of the gene. Updn contains the final verdict for the gene,

whether the tumor sample over- or under-expresses a gene in tumor. maxk column

contains the maximum k value for the each gene using the k-core analysis.

File fig1tbl.txt contains the table of values plotted on Figure 1 in the paper.

Section 2.3: Matching of Affymetrix Oligo Probeset Targets with OPHID proteins

The following processes were used in order to compare the transcriptome data,

obtained by Affymetrix oligonucleotide microarray, with the genes are present in the

protein network represented by OPHID. File ophid1114237070973.txt is the original

file downloaded from OPHID database, which was used for the analysis in this study.

First, official gene symbol (determined by HUGO Gene Nomenclature

Committee, used by both OPHID and Affymetrix) were used to match the probesets in

Affymetrix microarray and OPHID. OPHID database includes Swissprot ID and gene

symbol. For each Swissprot ID, the matching symbol was extracted from the file.

Affymetrix probe dataset is downloaded as a source from Bioconductor web site.

The Bioconductor metadata was built from data obtained on LocusLink, built on March

3, 2004. Simple table matching was performed using R code. Some of the genes were

not matched by symbols, because some of the genes were not given standard gene

symbols. For these cases, FASTA sequence matching program was used. Protein

sequence for Affymetrix HGU133A target genes were obtained from EnsMART at

ENSEMBL. OPHID contains the protein sequence used for their protein network

generation. Using these two tables, we have performed pair-wise sequence alignment to

find the best matching case. We have used the default setting for FASTA program, and

discarded where the p value of the match exceeded 0.01. File swiss2sym.txt includes the

completed conversion table.

Section 3.3: k-core Analysis of Protein Network

To implement the k-core analysis the following steps were used.

1. Sort nodes according to their present degree (connectedness)
a. Determine the existing nodes from the paired list
b. Determine the degree of nodes

2. Remove the nodes with degree lower than k
a. Create a selection list for edges with more or equal to k degrees
b. Select according to list.

The following is the R code used for the analysis of the.graph, which is a binary list (2-

by-n matrix) of genes, which is derived from OPHID.

nodedeg <- function(the.graph, counter = F){
 x <- unique(as.character(the.graph))
 y <- as.numeric(x)
 y[] = c(0)
 names(y) = x
 node.deg <- y
 for(i in x){
 if(counter){
 cat(i,"\n")}
 node.deg[i] = sum(the.graph[,1] == i) + sum(the.graph[,2] == i)
 }
 node.deg
}

k.core <- function(the.graph, k){
 nd <- nodedeg(the.graph)
 qnd <- names(nd[nd >= k])
 the.graph[(the.graph[,1] %in% qnd) & (the.graph[,2] %in% qnd),]
}

Iteration of this will be...

k.core.result <- c()
k.core.result[[1]] = the.graph
for(i in 2:9)
{
 cat(i,"core\n")
 the.graph <- k.core(the.graph, i)
 k.core.result[[i]] = the.graph
}

Thus, k.core.result will be a list of graphs with m elements, where the iterative

pruning occurs incrementally.

Here is the code for the calculation of excess retention (ER). The description of

the calculation is detailed in section 2.3 of this paper. A is the list of genes in the graph.

#count # nodes in graph
z <- unique(as.character(the.graph))
N <- length(z)
Na <- sum(z %in% A)
Ea <- Na / N

ERak.list <- c()
for(i in 1:9)
{
 kc <- k.core.result[[i]]
 z <- unique(as.character(kc))
 Nk <- length(z)
 nak <- sum(z %in% A)
 eak <- nak/Nk
 ERak <- eak/Ea
 ERak.list[i] = ERak
}

Thus, ERak.list contains the list of ER values for each k-core for the given list of genes.

	Supplementary Information

