Supplementary data to :

Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion

Laurent Perrin¹, Ursula Loizides-Mangold^{1,6}, Svetlana Skarupelova^{1,6}, Pamela Pulimeno¹, Stephanie Chanon², Maud Robert³, Karim Bouzakri⁴, Christine Modoux⁵, Pascale Roux-Lombard⁵, Hubert Vidal², Etienne Lefai², Charna Dibner^{1,*}

¹Division of Endocrinology, Diabetes and Nutrition, Department of Clinical Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
²CarMeN Laboratory, INSERM U1060, INRA 1397, University Lyon 1, Oullins, France
³Department of Digestive and Bariatric Surgery, Edouard Herriot Hospital, Lyon, France
⁴Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
⁵Division of Immunology and Allergy, Department of Medical Specialties, University Hospital and Faculty of Medicine, University of Geneva, Geneva, Switzerland
⁶U. Loizides-Mangold and S. Skarupelova contributed equally to this study

*Corresponding author. Charna Dibner; Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Clinical Medicine, Faculty of Medicine, University of Geneva, Aile Jura 4-774, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland email: Charna.Dibner@hcuge.ch Phone: +41 22 372 93 18; Fax: +41 22 372 93 26

Table of Contents

Supplementary Tables	3
Supplementary Table 1	3
Supplementary Table 2	4
Supplementary Figures	5
Supplementary Figure 1: Differentiation of in vitro cultured human skeletal myoblasts to)
myotubes	5
Supplementary Figure 2: In vitro synchronization by forskolin or dexamethasone induce	S
pronounced circadian oscillations in human skeletal myotubes	6
Supplementary Figure 3: Oscillation profiles of core clock transcripts in dexamethasone-	-
synchronized human myotubes.	7
Supplementary Figure 4: Impact of CLOCK knockdown on the oscillatory profile of	
dexamethasone-synchronized human myotubes.	8
Supplementary Figure 5: Basal IL-6 protein secretion profile after dexamethasone or	
forskolin synchronization.	9

Supplementary Tables

Supplementary Table 1

Sequences of human qPCR primers						
Gene name	Primer sequence					
BMAL1	Forward	5'-CCCTTGGACCAAGGAAGTAGAA-3'				
	Reverse	5'-CTTCCAGGACGTTGGCTAAAAC-3'				
CDU	E					
CRYI	Forward	5-GAGAACAGATCCCAATGGAGACTATAT-3				
	Reverse	5-CUTUTTAGGACAGGCAAATAACG-3				
REV-ERBa	Forward	5'-GATCGTGAGTCGCGGGGGTCC-3'				
	Reverse	5'-TGTAGGTGATGACGCCACCTGTGT-3'				
0500	Forward	5' CCCACCTCCCTCCTTTCAA 2'				
PER2	Poward	5' COTTOCOTOTOCO A COA A COTTTOC 3'				
	Keveise	5-001000010100AAC0AA0011100-5				
PER3	Forward	5'-CCTGGACCCTGAACATGCA-3'				
	Reverse	5'-TGTGAGCCCCACGTGTTTAA-3'				
	Forward	5'-TAGAAGGAGCGCCTTGAGTC-3'				
DDI	Reverse	5'-GCAACCCTCCAGTATCCAGA-3'				
	ite verse	s defineeereenomieenon s				
CLOCK	Forward	5'-CAAGCCACCGCAACAATT-3'				
	Reverse	5'-GGATTCCCATGGAGCAACCTA-3'				
11.6	Forward	5' GGTACATCCTCCACGCCATCT 2'				
ILO	Poward	5' CTCCCTCTTTCCTCCTTTCAC 2'				
	Keveise	5-GIGCETETHGETGETTEAC-5				
<i>9S</i>	Forward	5'-CTCCGGAACAAACGTGAGGT-3'				
	Reverse	5'-TCCAGCTTCATCTTGCCCTC-3'				
GAPDH	Forward	5'-GAAGGTGAAGGTCGGAGTC-3'				
OAI DII	Reverse	5'-GAAGATGGTGATGGGATTTC-3'				
HPRT	Forward	5'-GATTTTATCAGACTGAGGAGC-3'				
	Reverse	5'-TCCAGTTAAAGTTGAGAGATC-3'				

Supplementary Table 2

Amplitude of siControl and siClock-transfected samples determined by JTK_CYCLE						
	BMAL1	REV-ERBa	PER3	DBP		
Normalized mean amplitude (fold change)						
siControl	0.62	0.77	2.6	5.91		
siClock	0.8	0.51	1.46	2.99		

Supplementary Figures

Supplementary Figure 1: Differentiation of *in vitro* cultured human skeletal myoblasts to myotubes.

Representative photos were taken with a Zeiss Axiovert 200 microscope at day 0 (D0), D5, D7, and D10 following start of the differentiation process (switch from 20% to 2% FBS-containing medium, see Material and Methods for details). D0: start of the differentiation process; D5: cells are oriented in the same direction and fusion has already begun; D7: differentiation is complete; D10: myotubes keep the differentiated status for several days.

Supplementary Figure 2: *In vitro* synchronization by forskolin or dexamethasone induces pronounced circadian oscillations in human skeletal myotubes.

Bmal1-luc bioluminescence profiles were recorded from human myotubes, synchronized with a 30 min pulse of 100 nM dexamethasone (black line) or with a 1 h pulse of 10 μ M forskolin (red line). Raw (A) and detrended (B) oscillation profiles are representative of 2 independent experiments (one donor each) performed in duplicates.

Supplementary Figure 3: Oscillation profiles of core clock transcripts in dexamethasone-synchronized human myotubes.

Endogenous expression of core clock transcripts was assessed in dexamethasonesynchronized myotubes, collected every 4 h during 48 h following synchronization. RTqPCRs were performed in RNA samples extracted from human myotubes to assess (A) BMAL1, (B) CRY1, (C) REV- $ERB\alpha$, (D) PER2, (E) PER3, and normalized to the mean of 9S-GAPDH. Profiles are representative of n = 4 experiments (mean \pm SEM), each performed with myotubes from one donor in duplicates for every condition.

Supplementary Figure 4: Impact of CLOCK knockdown on the oscillatory profile of dexamethasone-synchronized human myotubes.

Myoblasts were transfected with *siClock* or *siControl* and differentiated into myotubes. (A) *CLOCK* transcript expression, as assessed by RT-qPCR and normalized to the mean of 9S-GAPDH, was reduced $90 \pm 2.2\%$ (mean \pm SEM, n = 5) in *siClock* transfected samples compared to *siControl* counterparts (*** p < 0.001). (B) Representative *Bmal1-luc* oscillation profiles in *siControl*-transfected (blue line), *siClock*-transfected (red line), or non-transfected (black line) human myotubes, synchronized with dexamethasone. *Bmal1-luc* oscillation profiles were recorded in duplicates in n = 8 experiments (one donor per experiment).

Supplementary Figure 5: Basal IL-6 protein secretion profile after dexamethasone or forskolin synchronization.

Human myotubes, transduced with the *Bmal1-luc* lentivector, were synchronized with dexamethasone (black line) or with forskolin (red line), and perifused for 48 h with culture medium; n = 2 experiments with one donor each. The perifusion outflow medium was collected in 4 h intervals and basal IL-6 levels in the medium were assessed by ELISA (0-4 corresponds to the accumulation of IL-6 between 0 and 4 h), normalized to the total DNA content.