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Part I: Spiking model network

Single neurons and synapses.

We simulate the individual cells as leaky integrate-and-fire neurons (Tuckwell 1988). The

membrane potential, Vi, of cell i obeys the current balance equation:

CM
dVi

dt
= −gL [Vi − VL]−gESE,i [Vi − VE]−gISI,i [Vi − VI ]−gextsext,i [Vi − VE]−gcuescue [Vi − VE]

(1)

where gL is the leak conductance, VL the leak potential, gE and VE are the conductance and

reversal potential for excitatory channels and gI and VI are the conductance and reversal

potential for inhibitory channels. gext and gcue are the fixed conductances for background

noisy input and applied, stimulus-dependent input, respectively, while sext and scue are the

corresponding time-dependent gating variables (see below). When the membrane potential

reaches a threshold, Vthr, the neuron spikes, and the membrane potential is reset at Vreset for

an absolute refractory period, τref , before continuing to follow Eq.(1).

The total synaptic drive for excitation or inhibition (SE or SI) is the sum of synaptic

inputs from all presynaptic neurons j,

Si =
∑

j

Wj→isj(t) (2)
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where Wj→i is the relative synaptic weight from cell j to cell i, and sj is the synaptic current

gating variable activated by the presynaptic neuron j firing spikes at times tspike,j. Specifically,

for excitatory synapses, we have

dsj

dt
= αs · PR(t)[1 − sj]δ(t − tspike,j) −

sj

τs
(3)

and for inhibitory synapses:

dsj

dt
= δ(t − tspike,j) −

sj

τs
(4)

with synaptic time constants τs. The probability of vesicular release, PR(t), is described in

the next subsection.

Background noisy input to all neurons is simulated using uncorrelated Poisson spike trains

at a rate, rext, through non-saturating synapses, of conductance gext, which are gated according

to:

dsext

dt
= δ(t − tspike,ext) −

sext

τext

(5)

with synaptic time constant, τext following spikes at times, tspike,ext.

Similarly, during the stimulus, Poisson spike trains of rate, λ, generate additional excitation

through AMPAR-mediated synapses of conductance, gcue, multiplied by a gating variable, scue

which follows:

dscue

dt
= δ(t − tspike,cue) −

scue

τext

. (6)

In the network models presented here, background and stimulus inputs are mediated by

AMPA receptors, with τext = 2ms, recurrent excitation through NMDA receptors with τs =

100ms and VE = 0mV, and inhibition through GABAA receptors with τs = 10ms and VI =

−70 mV. Other cellular parameters are for excitatory cells: CM = 0.5nF, gL = 38.4nS,
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VL = −70mV, Vreset = −60mV, Vthr = −45mV, τref=2ms, gext = 6nS, rext = 1.2kHz,

gE = 36nS, gI = 12nS; and for inhibitory cells: CM = 0.2nF, gL = 17.6nS, VL = −70mV,

Vreset = −60mV, Vthr = −50mV, τref = 1ms, gext = 1.6nS, rext = 1.8kHz, gE = gcue = 36nS,

gI = 12nS.

Short-term plasticity of excitatory synapses

All excitatory synapses exhibit short-term presynaptic facilitation and depression (Varela et

al. 1997, Hempel et al. 2000). We implement the scheme described by Matveev and Wang

(Matveev and Wang 2000) which assumes a docked pool of vesicles containing neurotrans-

mitter, where each released vesicle is replaced with a time constant, τd. The finite pool of

vesicles leads to synaptic saturation, as when the presynaptic neuron fires more rapidly than

vesicles are replaced, no extra excitatory transmission is possible. Such synaptic depression

contributes to stabilizing persistent activity at relatively low rates.

We assume that there is at most one vesicle release per spike, hence the release probability

at any individual synapse, PR(t), is

PR(t) = 1 − [1 − pv(t)]
N(t) (7)

where pv(t) is the release probability for an individual vesicle and N(t) is the number of docked

vesicles (smaller than a maximum N0). We make the simplification that there are many

synapses between each pair of connected neurons, such that the average release probability

per synapse, PR(t), simply scales the amplitude of synaptic transmission, as shown in Eq. 3.

Similarly, we do not keep track of a discrete N(t) for every individual synapse, but assume

that the several synapses between two neurons have a Binomial distribution with an average
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number of docked vesicles, < N(t) >. The brackets <> in Eq. 10 represent the average over

this Binomial distribution, with mean < N(t) > and maximum N0. Hence < N(t) > is a

continuous variable obeying:

d < N >

dt
=

N0− < N >

τd
− PR(t)δ(t − tspike) (8)

decreasing by PR after a spike at time tspike. By averaging over the binomial distribution we

have

PR =
〈

1 − [1 − pv(t)]
N(t)

〉

(9)

= 1 − [1 − pv(t)· < N(t) > /N0]
N0 (10)

and this value of PR is used in Eq. 3.

The vesicular release probability is given by the product of three gating variables, pv(t) =

O1(t)O2(t)O3(t). A gating variable Oi(t) (i = 1, 2, 3) increases due to calcium influx triggered

by an action potential, followed by a decay with time constant τ i
f between spikes. Specifically,

the following simple update rule is used: A gating variable Oi(t) (i = 1, 2, 3) follows

Oi(n + 1) = 1 −
{

1 − Oi(n) exp
[

−(tn+1 − tn)/τ i
f

]}

Ci
f (11)

Our simulations use the following values for the parameters: N0 = 16, τd = 500 msec,

C1
f = 0.45, τ 1

f = 50 msec, C2
f = 0.75, τ 2

f = 200 msec, C1
f = 0.9, τ 3

f = 2 sec.

Synaptic facilitation helps to stabilize the network to noise, because brief fluctuations in

activity do not get transmitted through recurrent excitatory synapses. However, our network

is not designed to use the facilitating synapses with their longer time constants as the basis

of time integration (Shen 1989).
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Connectivity details

Connection strengths between neurons depend only on their group numbers, and are all-to-all.

All weights are normalized (i.e. divided by) the number of neurons in the presynaptic group,

so that average network properties should be independent of the system size.

The set of weights WEI , WIE, WII all follow the same form:

W EI
i→j = W EI

max exp

(

− |i − j|

NgrpsσEI

)

(12)

where Ngrps = 12 is the total number of groups used, W EI
max is the maximum connection

strength, between groups of the same label (i = j) and σEI determines the breadth of con-

nections to other groups. W IE
max, σIE , W II

max and σII have similar definitions.

The recurrent excitation has a slightly different form. First, the connections within the

same group are significantly stronger than those between groups, so we define a separate set

of parameters for the W EE
i→i = Wi. Second, the connection strengths between different groups

i and j is asymmetric:

W EE
i→j = W EE

0 exp

(

− |i − j|

NgrpsσiA

)

(13)

for i < j and

W EE
i→j = W EE

0 exp

(

−A |i − j|

Ngrpsσi

)

(14)

if i > j, where A = 1.5 is an asymmetry factor.

The full set of parameters are as follows: W EE
0 = 0.16, W1 = 0.244, W2 = 0.239, W3 =

0.237, W4 = 0.238, W5 = 0.239, W6 = 0.24, W7 = 0.241, W8 = 0.242, W9 = 0.243, W10 =

0.244, W11 = 0.245, W12 = 0.246; σ1 = 0.5, σ2 = 0.5, σ3 = 0.39, σ4 = 0.385, σ5 = 0.385,

σ6 = 0.388, σ7 = 0.392, σ8 = 0.397, σ9 = 0.402, σ10 = 0.408, σ11 = 0.414, σ12 = 0.42;

W EI
max = 1.65, σEI = 0.25, W IE

max = 0.5, σIE = 0.2, W II
max = 2.0, σII = 0.5.
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Finally, there is cross-inhibition, such that the excitatory group i excites the oppositely

monotonic inhibitory group, 14 − i (see Fig. 1) with strength W EI
cross = 0.25.

Part II: Mean field analysis

Mean field method

We develop a mean field analysis that allows us to approximate the full spiking dynamics of

a group of identical, asynchronously firing neurons by their average firing rate as a function

of time. The key idea of a mean field analysis is to ignore fluctuations, and treat the system

in terms of slowly-varying average quantities. In the simplest analysis which we use here,

only one variable such as the firing rate is used to define the population activity. In a second

order analysis (Renart et al. 2003b) the average fluctuations (i.e. variance) in the firing

rate are also calculated self-consistently, such that the average CV becomes a second variable

in the population dynamics. In principle higher order correlations can be included, but the

calculations become overly complex to little advantage.

In other work (Brunel and Wang, 2001), analytical formulae have been developed to de-

scribe the firing rate of a leaky-integrate-and-fire neuron as a function of its excitatory and

inhibitory inputs. In the present paper we develop a different, empirical approach, which is

somewhat less elegant, but has computational benefits. Our reasons are two-fold. First, the

analytical formula contain terms which are computationally expensive to calculate. We save

time by fitting functions that are simpler. Second, the spikes of one neuron only affect another

when transmitted through the recurrent synapse, where they cause a change in synaptic con-
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ductance. It is the change in synaptic conductance which affects the firing of the next neuron,

and must be calculated self-consistently for the network. Hence we formulate our theory in

terms of the average synaptic conductances (which can be excitatory and inhibitory) rather

than firing rates.

We develop our mean field analysis by simulating a single spiking neuron under various

levels of constant excitation and inhibition. As well as recording the spikes for 100s, we also

calculate the effect of those spikes when passed through one of the recurrent synapses of the

network. Hence we know the average amount of excitatory (or inhibitory when analyzing an

interneuron) conductance that such a spiking neuron contributes through recurrent connec-

tions in the network. The mean field analysis is consistent in that constant values of excitatory

and inhibitory conductances (scaled as SE, SI) are used to excite the cell, and we use the av-

erage value of synaptic conductance from the resulting spike train (sout) as the constant effect

of this neuron on the rest of the network.

For each population in the network, the following steps are taken in a mean field approach

(see Fig. S1):

(1) Assign total synaptic inputs.

Assign the amount of excitation (SE,i) and inhibition (SI,i) that each population, i, re-

ceives. These quantities scale the excitatory conductance, gE, and inhibitory conductance, gI ,

of each neuron and determine its firing rate.

(2) Generate spiking statistics (Fig. S1a).

Given the excitatory and inhibitory inputs, SE,i and SI,i to the neuron in the i-th pop-

ulation and including the neuron’s standard Poisson noise input (see Supplementary Part I:

Single neurons and synapses) we calculate the spiking statistics. We measure all spikes over
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a long interval (100s) to obtain both the average rate and effectively all orders of correlations

between spikes for the given inputs. Fig. S1a indicates that the principal effect of increased

inhibition to a ‘standard’ leaky-integrate-and-fire neuron is a shift in the threshold of the

neuron, but otherwise the firing rate curve is almost parallel.

(3) Generate average synaptic dynamics from spikes (Fig. S1b).

The spike train is passed through a standard synapse. We assume all recurrent excitatory

synapses are identical in character, differing only in maximal conductance. Similarly all in-

hibitory synapses are identical to each other. Hence the spike train of the standard neuron in

the i-th population gives rise to an average amount of gating, sout
i , which describes the effect

of the presynaptic neuron on all of its postsynaptic contacts.

Fig. S1b demonstrates that the firing rate of excitatory neurons, νE,i, contains nearly all

of the information about the effect of a neuron on the postsynaptic conductance of another

(sout
E,i). The reason is that when the neuron, with fixed external noise and otherwise non-

fluctuating inputs, is firing at a certain rate, the CV does not greatly depend on the mixture

of constant inhibition and excitation that cause that firing rate. The small difference in curves

is a consequence of a slightly greater variability in spike times when firing at a particular

rate in the presence of stronger synaptic inputs, which decrease the effective membrane time

constant. A greater CV at a given rate leads to lower average postsynaptic conductance, sout
E ,

for excitatory cells.

(4) Sum all synapses to obtain new total inputs.

The gating fraction, sout
i must be weighted by the maximal synaptic conductance, to give

its actual effect on the postsynaptic neuron. The weight depends on which populations the

neurons are in, and is given by Wi→j for the synaptic weight of a neuron from population i
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to population j. Hence we calculate the total excitation to neurons in population j as SE,j =

∑

i Wi→js
out
E,i, where the sum over i is over all excitatory populations, and SI,j =

∑

k Wk→js
out
I,k ,

where the sum over k is over all inhibitory populations.

(5) Enforce self-consistency.

The newly calculated values of excitation and inhibition for each population {SE,j, SI,j}

must be the same as those assigned in step (1) for a self-consistent solution. That is the values

of recurrent synaptic inputs assigned in stage (1) are exactly those produced by the network

as calculated in stage (5). Fig. S1c plots the same curves as Figs S1a-b, but on the axes that

are used for fitting the data, as the variables SE, SI and sout are used for each neuron in

the self-consistency calculations. The average firing rates belonging to each population in the

steady state are readily obtained from stage (2).

Note that our method includes the full details of the spike train, not just the average

firing rate. Spike trains of the same rate but different variability result in different average

conductance changes when passed through a synapse. In particular, for a saturating synapse,

a regular spike train of a given rate leads to the largest average postsynaptic conductance.

However, while fluctuations in spike times are included to all orders, the method is strictly

first-order, as the effect of fluctuations of the synaptic conductances on the membrane potential

and hence spike times is not included. Given the long synaptic time constant of 100ms for the

NMDA receptors of recurrent synapses, it is certainly reasonable to expect that fluctuations

in synaptic conductance are less important than fluctuations in spike times.

Fig. 6 in the main text, which shows the stable states of the network, is plotted using

Xppaut. Two coupled networks, each of 12 excitatory populations and 12 inhibitory popu-

lations are simulated. A single mean-field neuron represents each asynchronous population
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of identical neurons. The parameter that is varied in the x-axis is applied excitatory drive

conductance, gApp. The drive is designed such that positive gApp makes the positively mono-

tonic neurons more excitable, but the negatively monotonic neurons less excitable. That is

SE,i 7→ SE,i + gApp/gE for populations 1,2,...12 and SE,i 7→ SE,i − gApp/gE for populations

1∗,2∗,...12∗.

For our neurons, the leak potential is equal to the reversal potential of inhibitory synapses

(VL = VI). Hence the firing threshold of neurons can be changed by adding a constant

inhibitory conductance, SI ·gI, which has an effect identical to a shift in the leak conductance,

gL. So the curves of Fig. S1 are equivalent to curves of neurons with different thresholds and

identical inhibitory input.

Mean field dynamics

The dynamics of sout
E for each mean-field excitatory neuron evolve according to the following

formulae:

τs

dsout
E,i

dt
= −sout

E,i + F (SE,i, SI,i) (15)

where F (SE,i, SI,i), plotted in Fig. S1c and defined in the next subsection, is the stable value

of sout
E,i, given total excitatory inputs, SE,i =

∑

j Wj−>is
out
E,j (where {j} = set of E-cells) and

inhibitory inputs SI,i =
∑

k Wk−>is
out
I,k (where {k} = set of I-cells). Similarly for inhibitory

neurons,

τs

dsout
I,i

dt
= −sout

I,i + G(SE,i, SI,i) (16)

with G(SE,i, SI,i) defined below, and the inputs SE,i and SI,i calculated in the same way as

for excitatory neurons.
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The equations are simulated with the synaptic time constant, τs = 100ms. Qualitatively

all the significant behaviors of the full-spiking network, including slow time integration, can be

observed in the mean field model. The .ode file used for these simulations can be downloaded

from the internet at

http://www.wanglab.brandeis.edu/∼pmiller/2twlviec.ode, and run using Xppaut.

Numerical approximations

In our mean field analysis, we use approximate formulae obtained by fitting suitable functions

to the measured synaptic output of model neurons. More elegant, analytic expressions do

exist for the firing rate and synaptic output of noisy integrate-and-fire neurons (Brunel and

Wang 2001) but these expressions include complicated integrals whose calculation requires

considerable time. Use of the full formulae would slow down the calculations considerably.

Fig. S1c includes the plot of the formula, F (SE, SI) that is empirically fitted to the mea-

sured curves of excitatory synaptic output, sout
E . The fitted formula is given by:

sout
E = F (SE, SI) =

0.742808

4

{

1.0 +
exp [α (SE − β)] − 1.0)

exp [α (SE − β)] + 1.0

}

·

{

1.0 +
exp [γ (SE − δ)] − 1.0)

exp [γ (SE − δ)] + 1.0

}

.

(17)

The functional form was chosen to give zero in the limit of a quiescent neuron, to saturate

at the correct maximum value for the depressing synapses used, and to allow different rates

of curvature near minimal activity to that near saturating activity. Note that the maximum,

saturating value, sout
E,M in the limit of large firing rates is given by the regular spiking result:

sout
E,M = νMτs

(1 − e−αs)
(

1 − e−1/νM τs

)

1 − e−αse−1/νM τs

= 0.742808 (18)

where νM = N0/τd is the maximal rate of vesicle release.
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The coefficients α− δ were calculated as a best fit for each curve with constant inhibition,

then the values of these coefficients were calculated from 20 curves with different inhibitory

input. Hence the coefficients themselves could be fit as functions of the inhibitory input, SI ,

where the functional form was chosen by eye:

α = 17.2065 + 13.014 · exp(−0.153926 · SI) (19)

β = 0.0448419 + 0.158992 · SI + 0.00088194 · (SI)
2

γ = 12.844 − 2.10019 · exp(−0.241788 · SI)

δ = 0.0309221 + 0.1655 · SI + 0.000711173 · (SI)
2 .

The firing rate, ν, of excitatory neurons is not needed in the self-consistency calculation,

but is used to plot the results in Fig. 6 of the main text. It is obtained from the synaptic

output variable, sout
E by empirically fitting a formula to Fig. S1b, giving:

νi = 16.47

√

√

√

√

sout
E,i

0.742808− sout
E,i

. (20)

Finally, we show how we include the inhibitory effects of interneurons. The inhibitory

synapses in our model do not undergo short term plasticity, so the average inhibitory postsy-

naptic conductance due to an interneuron is directly proportional to the average firing rate of

that interneuron (νI,i = sout
I,i /τ , where τ = 10ms). The average gating is:

sout
I = G(SE, SI) = 10 ·

[

1 −
1

1 + ε(SE − T )4

]

(21)

so long as the excitatory input, SE, is above the threshold, T , and is zero otherwise. The

functions are fitted as:

T = −0.107738 + 0.126268 · SI + 0.000182802 · (SI)
2

ε = 67.9692 − 18.8083 · exp(−0.791788 · SI).
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Supplementary Figure 1

(a) Firing rate of the model excitatory cell as a function of average gating, SE through the

recurrent excitatory channels of conductance, gE = 36nS, with different levels of inhibitory

conductance, SI · gI where gI = 12nS.

(b) The spikes of the model cell lead to probabilistic release of vesicles, that gate receptors

in the postsynaptic neuron. The average gating of the excitatory postsynaptic cells, sout
E is

plotted as a function of the firing rate of the presynaptic cell. The curves are not identical,

as not only the rate, but also the correlations between spikes affect sout
E .

(c) Combining curves (a) and (b) we plot the gating of the postsynaptic neuron as a

function of inputs to the presynaptic neuron. These curves are fit with an empirical formula

(dashed) that is used in the mean field model.

(d) Schematic figure indicating the mean field method, with stages A and B marked to

indicate the corresponding figures S1(a) and S1(b). Note that SE,i =
∑

j Wj→is
out
E,j.
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