www.sciencemag.org/cgi/content/full/science.aac8555/DC1

Supplementary Material for

O–H Hydrogen bonding promotes H-atom transfer from α C–H bonds for C-Alkylation of alcohols

Jenna L. Jeffrey, Jack A. Terrett, David W. C. MacMillan*

*Corresponding author. E-mail: dmacmill@princeton.edu

Published 28 August 2015 on *Science* Express DOI: 10.1126/science.aac8555

This PDF file includes:

Materials and Methods Supplementary Text Data DFT Calculations

Materials and Methods

Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego (46). Solvents were purified by passage through columns of activated alumina, or according to the method of Grubbs (47). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. Chromatographic purification of products was accomplished using forced-flow column chromatography on ICN 60 32-64 mesh silica gel 63 according to the method of Still (48). Thin-layer chromatography (TLC) was performed on Silicycle 0.25 mm silica gel F-254 plates. Visualization of the developed chromatogram was performed using a UV lamp, *p*-anisaldehyde, potassium permanganate, or ceric ammonium molvbdate stain. ¹H and ¹³C NMR spectra were recorded on a Bruker UltraShield Plus (500 and 125 MHz, respectively) instrument, and are internally referenced to residual protio solvent signals. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet), coupling constant (Hz), and integration. Data for ¹³C NMR are reported in terms of chemical shift relative to CDCl₃ (77 ppm) and no special nomenclature is used for equivalent carbons. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in terms of wavenumbers (cm⁻¹). High Resolution Mass spectra were obtained from the Princeton University Mass Spectrometry Facility.

Supplementary Text

General a-Alkylation Procedure: An 8-mL glass vial equipped with a Teflon septum and magnetic stir bar was charged with $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.8 mg, 2.5 µmol, 1 mol%), quinuclidine (2.8 mg, 25 µmol, 10 mol%), and either tetra-*n*-butylammonium phosphate (21 mg, 63 µmol, 25 mol%) or tetra-*n*-butylammonium trifluoroacetate (63 µmol, 25 mol%), followed by CH₃CN (0.31 mL, 0.8 M), 1-hexanol (63 µL, 0.50 mmol, 2.0 equiv) and methyl acrylate (23 µL, 0.25 mmol, 1.0 equiv). The resulting solution was then sparged with N₂ for 3 minutes. The vial was sealed and placed approximately 3 inches away from a Kessil[®] LED illuminator (model H150 blue, <u>http://www.kessil.com/horticulture/H150.php</u>). The reaction mixture was stirred and irradiated for 24 h. The internal temperature was maintained at approximately 27 °C by an electric fan placed approximately 10 inches above the vial. Upon completion, Amberlyst[®] 15 (dry, 100 mg) was added to the reaction mixture in one portion. The resulting mixture was heated with stirring at 50 °C for 3 h. After cooling to room temperature, the Amberlyst[®] 15 beads were removed by filtration and the reaction mixture was concentrated *in vacuo*. Purification of the crude product by flash column chromatography on silica gel using the indicated solvent system afforded the desired product.

5-Pentyldihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 1-hexanol (251 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv), and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (2:1 CH₂Cl₂/hexanes) as a colorless liquid (126 mg, 81% yield). Spectral data were identical to those of commercially available material and consistent with previous report (*49*).

3-Methyl-5-pentyldihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium trifluoroacetate (89.0 mg, 250 µmol, 25 mol%), 1-hexanol (251 µL, 2.00 mmol, 2.0 equiv), isobornyl methacrylate (226 µL, 1.00 mmol, 1.0 equiv), and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (2:1 CH₂Cl₂/hexanes) as a colorless liquid (141 mg, 83% yield) consisting of two diastereomers (1.7:1 ratio, as determined by ¹H NMR). ¹H NMR (500 MHz, CDCl₃) δ 4.50 (tt, *J* = 7.7, 5.3 Hz, 1H), 4.33 (ddt, *J* = 10.7, 7.5, 5.5 Hz, 1H), 2.74–2.60 (m, 2H), 2.48 (ddd, *J* = 12.4, 8.5, 5.4 Hz, 1H)

1H), 2.15–2.06 (m, 1H), 2.04–1.94 (m, 1H), 1.79–1.64 (m, 2H), 1.63–1.41 (m, 5H), 1.41–1.23 (m, 14H), 0.93–0.84 (m, 5H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 180.1, 179.6, 78.7, 78.5, 37.4, 35.9, 35.5, 35.4 (2), 34.0, 31.5 (2), 25.0, 24.9, 22.5 (2), 15.9, 15.1, 13.9 ppm; IR (film) 2932, 2862, 1765, 1456, 1378, 1355, 1291, 1188, 1171, 1126, 1081, 1038, 1008 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₀H₁₉O₂ [(M+H)⁺] 171.1380, found 171.1378.

Dihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv), methanol (202 µL, 5.00 mmol, 5.0 equiv) and CH₃CN (1.25 mL 0.8 M) were subjected to irradiation for 12 h. Upon completion, Amberlyst 15 beads (400 mg) were added and the reaction mixture was heated at 45 °C for 3 h. After cooling the reaction mixture to 23 °C, methyl benzoate (126 µL, 1.00 mmol, 1.0 equiv) was added as an internal standard and ¹H NMR analysis showed the desired product (61% yield), which was not isolated due to its volatility. Data were consistent with previous reports (*50*, *51*).

(*Z*/*E*)-5-(Hex-3-en-1-yl)dihydrofuran-2(3*H*)-one: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), (*Z*)-hept-4-en-1-ol (134 µL, 1.00 mmol, 1.0 equiv), methyl acrylate (450 µL, 5.00 mmol, 5.0 equiv) and CH₃CN (3.33 mL, 0.3 M) were used (40 h reaction time). The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (127 mg, 75% yield) consisting of two diastereomers (~1:1 ratio, as determined by ¹H NMR). Spectral data were consistent with previous reports (*53*, *54*).

5-Pentyl-3-phenyldihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 1-hexanol (251 µL, 2.00 mmol, 2.0 equiv), methyl 2-phenylacrylate (162 mg, 1.00 mmol, 1.0 equiv), and CH₃CN

(1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (2:1 CH₂Cl₂/hexane) as a colorless oil (176 mg, 76% yield) consisting of two diastereomers (2.2:1 ratio, as determined by ¹H NMR). ¹H NMR (500 MHz, CDCl₃, single diastereomer) δ 7.40–7.32 (m, 2H), 7.32–7.26 (m, 3H), 4.64 (tt, *J* = 7.5, 5.7 Hz, 1H), 3.90 (dd, *J* = 9.5, 6.8 Hz, 1H), 2.50 (dt, *J* = 13.1, 7.0 Hz, 1H), 2.42–2.34 (m, 1H), 1.87–1.74 (m, 1H), 1.69–1.60 (m, 1H), 1.56–1.46 (m, 1H), 1.46–1.38 (m, 1H), 1.38–1.30 (m, 4H), 0.94–0.87 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 137.2, 128.9, 127.6, 127.5, 79.0, 45.7, 36.4, 35.4, 31.5, 25.0, 22.5, 13.9 ppm; IR (film) 2956, 2930, 2859, 1761, 1605, 1498, 1455, 1364, 1256, 1232, 1155, 1080, 1049, 1031, 1009 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₂₁O₂ [(M+H)⁺] 233.1536, found 233.1537.

5-(Tetrahydro-2*H***-pyran-2-yl)dihydrofuran-2(3***H***)-one: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (7.80 mg, 7.00 µmol, 1 mol%), quinuclidine (7.80 mg, 70.0 µmol, 10 mol%), tetra-***n***-butylammonium phosphate (59.4 mg, 175 µmol, 25 mol%), (tetrahydro-2H-pyran-2-yl)methanol (158 µL, 1.40 mmol, 2.0 equiv), methyl acrylate (63.4 µL, 0.70 mmol, 1.0 equiv) and CH₃CN (0.88 mL, 0.8 M) were used (48 h reaction time). The product was isolated by flash column chromatography (10:1 hexanes/EtOAc) as a colorless oil (86 mg, 72% yield) consisting of two diastereomers (2:1 ratio, as determined by ¹H NMR). ¹H NMR (500 MHz, CDCl₃, single diastereomer) \delta 4.33 (td,** *J* **= 6.7, 4.5 Hz, 1H), 4.02–3.91 (m, 1H), 3.50–3.34 (m, 2H), 2.65–2.51 (m, 1H), 2.50–2.36 (m, 1H), 2.22 (td,** *J* **= 8.4, 6.7 Hz, 2H), 1.94–1.81 (m, 1H), 1.69–1.62 (m, 1H), 1.59–1.43 (m, 3H), 1.29 (tdd,** *J* **= 12.6, 11.3, 4.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) \delta 177.5, 82.0, 78.3, 68.4, 28.2, 27.5, 25.8, 22.9, 22.8 ppm; HRMS (ESI)** *m/z* **calcd for C₉H₁₅O₃ [(M+H)⁺] 171.1021, found 171.1021.**

5,5-Dimethyldihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), isopropanol (153 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. Analysis of the crude reaction mixture using ¹H NMR with an internal standard (methyl benzoate, 126 µL, 1.00 mmol, 1.0 equiv) indicated 93% yield of the desired product, which was not isolated due to its volatility. Spectral data were consistent with previous report (*54*).

5,5-Diethyldihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.80 mg, 2.50 µmol, 0.25 mol%), quinuclidine (2.80 mg, 25.0 µmol, 2.5 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 2-hexanol (252 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used (40 h reaction time). The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (108 mg, 76% yield). Spectral data were consistent with previous report (55).

5-Butyl-5-methyldihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 2-hexanol (252 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (125 mg, 80% yield). Spectral data were consistent with previous report (*56*).

1-Oxaspiro[4.4]nonan-2-one: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), cyclopentanol (182 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (111 mg, 79% yield). Spectral data were consistent with previous reports (55, 57, 58).

1-Oxaspiro[4.5]decan-2-one: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), cyclohexanol (211 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (139 mg, 90% yield). Spectral data were consistent with previous reports (*58, 59*).

1-Oxaspiro[4.6]undecan-2-one: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), cycloheptanol (241 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (151 mg, 90% yield). Spectral data were consistent with previous report (56).

5-(3-Phenylpropyl)dihydrofuran-2(3*H***)-one**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 4-phenylbutan-1-ol (305 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (2:1 CH₂Cl₂/hexanes) as a colorless oil (150 mg, 73% yield). Spectral data were consistent with previous reports (*60*).

3-(5-Oxotetrahydrofuran-2-yl)propyl benzoate: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 4-hydroxybutyl benzoate (194 mg, 1.00 mmol, 1.0 equiv), methyl acrylate (450 µL, 5.00 mmol, 5.0 equiv), and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (2:1 CH₂Cl₂/hexanes) as a colorless oil (201 mg, 81% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.05–7.98 (m, 2H), 7.60–7.51 (m, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 4.59–4.50 (m, 1H), 4.42–4.28 (m, 2H), 2.54 (dd, *J* = 9.6, 6.8 Hz, 2H), 2.35 (dq, *J* = 13.4, 6.8 Hz, 1H), 2.04–1.73 (m, 5H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 166.4, 132.9, 130.0, 129.4, 128.3, 80.2, 64.1, 32.2, 28.7, 27.9, 24.8 ppm; IR (film) 2953, 1768, 1712, 1602, 1584, 1492, 1452, 1421, 1385, 1349, 1314, 1271, 1221, 1175, 1113, 1070, 1025 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₇O₄ [(M+H)⁺] 249.1121, found 249.1121.

5-(4-(Benzyloxy)butyl)dihydrofuran-2(3*H***)-one**: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (11.2 mg, 10.0 μmol, 1 mol%), quinuclidine (11.1 mg, 100 μmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 μmol, 25 mol%), 5-(benzyloxy)pentan-1-ol (389 mg, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 μL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (6:3:1 CH₂Cl₂/hexanes/EtOAc) as a colorless oil (186 mg, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.26 (m, 5H), 4.54–4.43 (m, 3H), 3.48 (t, *J* = 6.3 Hz, 2H), 2.56–2.49 (m, 2H), 2.31 (dq, *J* = 12.9, 6.8 Hz, 1H), 1.90–1.70 (m, 2H), 1.70–1.42 (m, 5H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 138.4, 128.3, 127.6, 127.5, 80.8, 72.9, 69.9, 35.3, 29.4, 28.8, 27.9, 22.1 ppm; IR (film) 3030, 2933, 2859, 1767, 1496, 1454, 1421, 1360, 1217, 1178, 1098, 1019 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₂₀NaO₃ [(M+Na)⁺] 271.13047, found 271.13034.

3-(1-Hydroxyhexyl)cyclopentan-1-one: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium trifluoroacetate (89.0 mg, 250 µmol, 25 mol%), cyclopent-2-

enone (84.0 µL, 1.00 mmol, 1.0 equiv), 1-hexanol (251 µL, 2.00 mmol, 2.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used (70 h reaction time). The product was isolated by flash column chromatography (2:1 hexanes/EtOAc) as a colorless oil (155 mg, 84% yield) consisting of two diastereomers and the corresponding ketals. ¹H NMR (500 MHz, CDCl₃) δ 3.68–3.47 (m, 1H), 2.40-2.09 (m, 5H), 2.08-1.98 (m, 1H), 1.81-1.68 (m, 1H), 1.56-1.38 (m, 4H), 1.37-1.28 (m, 4H), 0.94–0.85 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 219.3, 219.1, 74.5, 74.3, 42.8, 42.7, 41.8, 40.4, 38.6, 38.5, 35.8, 35.8, 31.8, 31.8, 26.0, 25.3, 25.3, 24.6, 22.6, 14.0 ppm; IR (film) 3431, 2956, 2928, 2859, 1733, 1461, 1403, 1378, 1282, 1162, 1126, 1053, 1024 cm⁻¹; HRMS (ESI) m/z calcd for C₁₁H₂₀O₂ [(M)⁺] 184.1463, found 184.1462. A portion of the product mixture (38 mg) was heated in acetic anhydride (20 equiv) at 80 °C for 12 h. Upon completion, the reaction mixture was cooled to 25 °C and the solvent was removed in vacuo to afford the acetate as a colorless oil consisting of two diastereomers (~1:1 ratio). ¹H NMR (500 MHz, CDCl₃) δ 5.00-4.89 (m, 1H), 2.44-2.23 (m, 3H), 2.22-2.06 (m, 2H), 2.05 (s, 1.5H), 2.03 (s, 1.5H), 1.94-1.85 (m, 0.5 H), 1.78–1.66 (m, 0.5H), 1.65–1.44 (m, 3H), 1.36–1.13 (m, 6H), 0.90–0.82 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 218.0, 217.9, 170.7, 170.7, 75.8, 75.7, 41.5, 40.6, 40.5, 40.4, 38.4, 38.0, 32.8, 32.7, 31.6, 25.9, 24.9, 24.8, 22.4, 21.0, 21.0, 13.9 ppm; IR (film) 2932, 2862, 1734, 1461, 1406, 1372, 1235, 1160, 1130, 1049, 1022 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{13}H_{22}NaO_3 [(M+Na)^+] 249.1467$, found 249.1467.

4-Hydroxynonanenitrile: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetra-*n*butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 1-hexanol (251 µL, 2.00 mmol, 2.0 equiv), acrylonitrile (66.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (4:1 \rightarrow 1:1 hexanes/EtOAc) as a colorless oil (117 mg, 75% yield). Spectral data were consistent with previous reports (*61*, *62*).

Methyl 5-oxo-2-pentyltetrahydrofuran-3-carboxylate: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.2 mg, 100 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 1-hexanol (314 µL, 2.5 mmol, 2.5 equiv), dimethyl fumarate (144 mg, 1.00 mmol, 1.0 equiv), and CH₃CN (1.25 mL, 0.8 M) were used. The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (141 mg, 66% yield) consisting of two diastereomers (1.4:1 ratio, as determined by ¹H NMR). Spectral data were consistent with previous reports (*63*).

5-Pentyldihydrofuran-2(3H)-one-5-d: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (21.2 mg, 63.0 μ mol, 25 mol%), hexan-1,1-d₂-1-ol (52.0 mg, 0.50 mmol, 2.0 equiv), methyl acrylate (23.0 µL, 0.250 mmol, 1.0 equiv) and CH₃CN (0.31 mL, 0.8 M) were used. Purification by silica gel column chromatography $(9:1 \rightarrow 2:1)$ hexanes/EtOAc) afforded the product (72.5 mg, 80% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 2.55–2.50 (m, 2H), 2.31 (dt, J = 13.4, 6.9 Hz, 1H), 1.84 (dt, J = 12.7, 9.4 Hz, 1H), 1.73 (ddd, J = 14.5, 9.9, 5.1 Hz, 1H), 1.63–1.53 (m, 1H), 1.51–1.25 (m, 6H), 0.93–0.84 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 80.6 (t), 35.4, 31.5, 28.8, 27.8, 24.8, 22.5, 13.9 ppm. IR (film) 2931, 2861, 1769, 1460, 1422, 1379, 1280, 1254, 1197, 1175, 1128, 1046 cm⁻¹; HRMS (ESI) m/z calcd for C₉H₁₆DO₂ [(M+H)⁺] 158.1291, found 158.1289.

(5S,8R,9S,10S,13S,14S)-10,13-Dimethylhexadecahydro-5'H-

spiro[cyclopenta[a]phenanthrene-17,2'-furan]-3,5'(2H)-dione: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), tetra-n-butylammonium phosphate (21.2 mg, 63.0 µmol, 25 mol%), dihydrotestosterone (72.6 mg, 0.25 mmol, 1.0 equiv), methyl acrylate (68.0 µL, 0.750 mmol, 3.0 equiv) and DMF (0.50 mL, 0.5 M) were used. Purification by silica gel column chromatography $(9:1 \rightarrow 2:1 \text{ hexanes/EtOAc})$ followed by recrystallization from hexanes afforded the product (45.3 mg, 53% yield, >20:1 dr as determined by ¹H NMR) as a colorless solid. ¹H NMR (500 MHz, CDCl₃) δ 2.60–2.44 (m, 2H), 2.43–2.34 (m, 2H), 2.33–2.19 (m, 3H), 2.09 (ddd, J = 15.0, 3.9, 2.3Hz, 1H), 2.02 (ddd, J = 13.1, 6.5, 2.4 Hz, 1H), 1.90 (ddd, J = 12.8, 9.3, 7.5 Hz, 1H), 1.80 (ddd, J= 14.1, 9.6, 5.8 Hz, 1H), 1.73 (dq, J = 13.1, 3.5 Hz, 1H), 1.70–1.61 (m, 2H), 1.56 (dt, J = 12.0, 3.2 Hz, 1H, 1.53-1.48 (m, 1H), 1.47-1.26 (m, 6H), 1.14 (ddd, J = 12.2, 10.6, 7.4 Hz, 1H), 1.02 Hz, 1.02(s, 3H), 0.94 (s, 3H), 0.93–0.84 (m, 1H), 0.72 (ddd, J = 12.3, 10.8, 4.3 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 211.7, 176.8, 96.0, 53.4, 49.6, 46.6, 45.7, 44.6, 38.5, 38.1, 35.7, 35.7, 35.6, 31.8, 31.2, 31.2, 29.3, 28.6, 22.9, 20.8, 14.6, 11.5 ppm; IR (film) 2929, 2854, 1767, 1737, 1709, 1446, 1420, 1385, 1264, 1214, 1187, 1152, 1076, 1055, 1025 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{22}H_{32}O_3$ [(M+H)⁺] 345.2424, found 345.2424.

(55,8R,9S,10S,13S,14S,17S)-17-Methoxy-10,13-dimethyloctadecahydro-5'Hspiro[cyclopenta]a]phenanthrene-3,2'-furan]-5'-one: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, mol%), tetra-*n*-butylammonium phosphate (21.2 mg, 63.0 umol. 25 10 mol%). (5S,8R,9S,10S,13S,14S,17S)-17-methoxy-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3-ol (77.0 mg, 0.250 mmol, 1.0 equiv), methyl acrylate (45.0 µL, 0.50 mmol, 2.0 equiv) and CH₃CN (0.31 mL, 0.8 M) were used (48 h reaction time). The product was isolated by silica gel column chromatography (9:1 \rightarrow 2:1 hexanes/EtOAc) as a colorless solid (69.0 mg, 77% yield, >20:1 dr as determined by ¹H NMR). ¹H NMR (500 MHz, CDCl₃) δ 3.33 (s, 3H), 3.20 (t, J = 8.3 Hz, 1H), 2.57 (t, J = 8.3 Hz, 2H), 2.14–1.95 (m, 3H), 1.94–1.85 (m, 2H), 1.80 (t, J = 13.1 Hz, 1H), 1.74 (dt, J = 13.6, 3.7 Hz, 1H), 1.68 (dt, J = 13.0, 3.6 Hz, 1H), 1.61 (dq, J = 12.8, 3.2 Hz, 1H), 1.58–1.49 (m, 2H), 1.48–1.34 (m, 3H), 1.34–1.20 (m, 4H), 1.14 (td, J = 12.7, 4.0 Hz, 2H), 1.07–0.90 (m, 2H), 0.84 (s, 4H), 0.74 (s, 3H), 0.65 (td, J = 11.5, 4.1 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 90.7, 87.4, 57.8, 54.4, 51.2, 43.4, 42.9, 39.3, 38.0, 35.6, 35.6, 35.2, 32.3, 31.5, 31.3, 28.6, 28.4, 27.6, 23.3, 20.9, 11.7, 11.6 ppm; IR (film) 2923, 2847, 1773, 1451, 1361, 1294, 1265, 1212, 1188, 1172, 1141, 1117, 1103, 1082, 1023 cm⁻¹; HRMS (ESI) m/z calcd for C₂₃H₃₇O₃ [(M+H)⁺] 361.2737, found 361.2737.

(8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-Acetyl-10,13-dimethyl-1,2,3',4,4',7,8,9,10,11,12,13,14,15,16,17-hexadecahydro-5'*H*-spiro[cyclopenta[*a*]phenanthrene-3,2'-furan]-5'-one:

According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (5.60 mg, 5.00 µmol, 1 mol%), quinuclidine (5.60 mg, 50.0 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (42.4 mg, 125 µmol, 25 mol%), 3β-hydroxypregn-5-en-20-one (158 mg, 0.50 mmol, 1.0 equiv), methyl acrylate (362 µL, 4.00 mmol, 8.0 equiv) and DMF (1.25 mL, 0.4 M) were used (48 h reaction time). Purification by silica gel column chromatography (2:1 CH₂Cl₂/hexanes), followed by recrystallization from ethanol, afforded the title compound (129 mg, 70% yield, >20:1 dr as determined by ¹H NMR) as a colorless solid. ¹H NMR (500 MHz, CDCl₃) δ 5.40–5.35 (m, 1H), 2.68 (dq, *J* = 13.4, 2.8 Hz, 1H), 2.63–2.46 (m, 3H), 2.21–2.13 (m, 1H), 2.11 (s, 3H), 2.10–1.97 (m, 5H), 1.93–1.80 (m, 2H), 1.73–1.38 (m, 8H), 1.28–1.18 (m, 1H), 1.17–1.08 (m, 2H), 1.03 (s, 3H), 1.02–0.95 (m, 1H), 0.62 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 209.4, 176.5, 139.0, 123.4, 87.3, 63.6, 56.7, 50.0, 43.9, 42.8, 38.7, 36.4, 35.6, 33.1, 31.7, 31.7, 31.5, 29.6, 28.4, 24.4, 22.7, 21.0, 19.0, 13.2 ppm; IR (film) 2965, 2939, 2892, 2866, 2852, 2825, 1775, 1701, 1447,

1383, 1356, 1294, 1265, 1245, 1223, 1204, 1186, 1164, 1152, 1130, 1096, 1073, 1038, 1018 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{24}H_{35}O_3$ [(M+H)⁺] 371.2586, found 371.2586.

5-(4-((*tert***-Butyldimethylsilyl)oxy)butyl)dihydrofuran-2(3***H***)-one: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 0.25 mol%), quinuclidine (2.80 mg, 25.0 µmol, 2.50 mol%), tetra-***n***-butylammonium phosphate (85.0 mg, 250 µmol, 25 mol%), 5-((***tert***-butyldimethylsilyl)oxy)pentan-1-ol (437 mg, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used (40 h reaction time). The product was isolated by silica gel column chromatography (10:1 hexanes/EtOAc) as a colorless oil (199 mg, 73% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.53–4.44 (m, 1H), 3.61 (t,** *J* **= 6.2 Hz, 2H), 2.57–2.49 (m, 2H), 2.32 (ddt,** *J* **= 13.0, 7.4, 6.5 Hz, 1H), 1.85 (dtd,** *J* **= 12.8, 9.5, 8.0 Hz, 1H), 1.80–1.72 (m, 1H), 1.67–1.40 (m, 5H), 0.89 (s, 9H), 0.04 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 80.9, 62.8, 35.3, 32.4, 28.8, 28.0, 25.9, 21.7, 18.3, -5.3 ppm; IR (film) 2932, 2858, 1776, 1462, 1360, 1254, 1178, 1097, 1007 cm⁻¹; HRMS (ESI)** *m/z* **calcd for C₁₄H₂₉O₃Si [(M+H)⁺] 273.1886, found 273.1885. Spectral data were consistent with previous reports (***64***,** *65***).**

(S)-5-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-

b:4',5'-d|pyran-5-yl)dihydrofuran-2(3H)-one: According to the general procedure. Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), tetra-n-butylammonium phosphate (21.0 mg, 63.0 µmol, 25 mol%), 1,2:3,4-Di-Oisopropylidine- α -D-galactopyranose (65.0 mg, 0.25 mmol, 1.0 equiv), methyl acrylate (227 μ L, 2.50 mmol, 8.0 equiv) and CH₃CN (0.50 mL, 0.5 M) were used. The product was isolated by silica gel column chromatography (4:1 hexanes/EtOAc) as a colorless viscous oil (67.3 mg, 85% yield) consisting of two diastereomers (~1:1 ratio). The diastereomers were separated by a second flash column (silica gel, 4:1 hexanes/EtOAc \rightarrow 2:1 hexanes/EtOAc). Diastereomer 1: ¹H NMR (500 MHz, CDCl₃) δ 5.52 (d, J = 4.9 Hz, 1H), 4.69 (q, J = 7.1 Hz, 1H), 4.62 (dd, J = 8.0, 2.4 Hz, 1H), 4.36 (dd, J = 8.0, 1.9 Hz, 1H), 4.32 (dd, J = 5.0, 2.4 Hz, 1H), 3.74 (dd, J = 7.5, 1.9 Hz, 1H), 2.55–2.49 (m, 2H), 2.42–2.32 (m, 1H), 2.28–2.17 (m, 1H), 1.51 (s, 3H), 1.45 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 109.5, 108.8, 96.2, 77.5, 70.6, 70.5, 70.4, 69.0, 27.9, 26.1, 25.8, 24.8, 24.7, 24.1 ppm; IR (film) 2988, 2938, 1779, 1459, 1382, 1373, 1254, 1211, 1164, 1106, 1063 cm⁻¹; Diastereomer 2: ¹H NMR (500 MHz, CDCl₃) δ 5.56 (d, J = 5.0 Hz, 1H), 4.70–4.57 (m, 2H), 4.34 (dd, J = 5.0, 2.5 Hz, 1H), 4.26 (dd, J = 7.9, 2.0

Hz, 1H), 3.79 (dd, J = 7.5, 1.9 Hz, 1H), 2.59–2.49 (m, 2H), 2.43–2.33 (m, 1H), 2.07 (dq, J = 12.9, 9.8 Hz, 1H), 1.50 (s, 3H), 1.45 (s, 3H), 1.32 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 109.8, 108.8, 96.2, 79.5, 70.7, 70.3, 70.2, 69.9, 28.5, 26.1, 25.9, 24.9, 24.5, 24.1 ppm; IR (film) 2987, 2937, 1774, 1458, 1377, 1253, 1210, 1166, 1104, 1067, 1047, 1023 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₂₃O₇ [(M+H)⁺] 315.1444, found 315.1445.

Methyl 3-(tetrahydrofuran-2-yl)propanoate: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (11.2 mg, 10.0 µmol, 1 mol%), quinuclidine (11.1 mg, 100 µmol, 10 mol%), tetrahydrofuran (164 µL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 µL, 1.00 mmol, 1.0 equiv) and CH₃CN (1.25 mL, 0.8 M) were used. Methyl benzoate (126 µL, 1.00 mmol, 1.0 equiv) was added as an internal standard and ¹H NMR analysis showed the desired product (64% yield). The volatile product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.87–3.78 (m, 2H), 3.70 (td, *J* = 8.0, 6.3 Hz, 1H), 3.66 (s, 3H), 2.51–2.32 (m, 2H), 1.98 (dddd, *J* = 11.7, 8.5, 6.5, 5.0 Hz, 1H), 1.94–1.75 (m, 4H), 1.46 (ddt, *J* = 12.0, 8.7, 7.4 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 78.1, 67.7, 51.6, 31.2, 30.9, 30.7, 25.7 ppm; IR (film) 2953, 2872, 1735, 1438, 1356, 1260, 1195, 1164, 1069, 1017 cm⁻¹.

Benzyl 3-(tetrahydrofuran-2-yl)propanoate: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), benzyl acrylate (37.5 µL, 0.25 mmol, 1.0 equiv), tetrahydrofuran (61.0 µL, 0.75 mmol, 3.0 equiv), and CH₃CN (0.63 mL, 0.3 M) were used. The product was isolated by flash column chromatography (6:1 hexanes/EtOAc) as a colorless oil (20.6 mg, 35% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.27 (m, 5H), 5.12 (s, 2H), 3.87–3.78 (m, 2H), 3.70 (td, *J* = 8.0, 6.3 Hz, 1H), 2.57–2.38 (m, 2H), 2.02–1.93 (m, 1H), 1.93–1.78 (m, 4H), 1.46 (ddt, *J* = 11.9, 8.7, 7.4 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 136.0, 128.5, 128.1, 128.1, 78.1, 67.7, 66.1, 31.1, 31.1, 30.6, 25.7 ppm; IR (film) 2955, 2869, 1733, 1498, 1457, 1419, 1379, 1350, 1258, 1213, 1157, 1110, 1069, 1017 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₈NaO₃ [(M+Na)⁺] 257.1154, found 257.1155.

Benzyl 3-(tetrahydrofuran-2-yl-*d*₇**)propanoate-2-***d*: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), benzyl acrylate (37.5 µL, 0.25 mmol, 1.0 equiv), tetrahydrofuran-*d*₈ (61.0 µL, 0.75 mmol, 3.0 equiv), and CH₃CN (0.63 mL, 0.3 M) were used. The product was isolated by flash column chromatography (6:1 hexanes/EtOAc) as a colorless oil (24.5 mg, 41% yield), which was partially deuterated (23%) at the carbon position α to the carbonyl. ¹H NMR (500 MHz, CDCl₃)

δ 7.40–7.28 (m, 5H), 5.12 (s, 2H), 2.56–2.39 (m, 1.55H, 23% D incorporation), 1.90–1.76 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 136.0, 128.5, 128.1, 128.1, 77.5 (m), 66.8 (m), 66.1, 31.1, 30.8 (m), 30.8 (m), 30.5, 30.4, 24.6 (m) ppm; IR (film) 2941, 1732, 1498, 1456, 1381, 1355, 1242, 1214, 1164, 1106, 1027 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₀D₈NaO₃ [(M+Na)⁺] 265.1656, found 265.1656.

Hexan-1-d-1-ol: To a suspension of LiAlD₄ (342 mg, 8.14 mmol, 0.5 equiv) in dry THF (5 mL) at 0 °C was added a solution of hexanal (2.00 mL, 16.3 mmol, 1.0 equiv) in THF (5 mL) dropwise. The mixture was warmed to 23 °C and stirred an additional 3 h at 23 °C. Upon completion, the solution was cooled to 0 °C and quenched by addition of 1 M aqueous HCl. The mixture was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. Purification by flash column chromatography (1:1 pentane/Et₂O) afforded the pure product as a colorless liquid (1.4 g, 83% yield). ¹H NMR (500 MHz, CDCl₃) δ 3.62 (ddd, *J* = 8.3, 4.9, 1.6 Hz, 1H), 1.56 (q, *J* = 7.0 Hz, 2H), 1.42–1.24 (m, 6H), 0.89 (t, *J* = 6.8 Hz, 3H) ppm; IR (film) 3320, 2957, 2927, 2859, 2163, 1463, 1379, 1343, 1131, 1066, 1033 cm⁻¹. Spectral data were consistent with previous report (*66*).

Hexan-1,1-*d*₂**-1-ol**: To a suspension of LiAlD₄ (504 mg, 12.0 mmol, 0.5 equiv) in dry THF (5 mL) at 0 °C was added a solution of methyl hexanoate (3.53 mL, 24.0 mmol, 1.0 equiv) in THF (5 mL) dropwise. The mixture was warmed to 23 °C and stirred an additional 3 h at 23 °C. Upon completion, the solution was cooled to 0 °C and quenched by addition of 1 M aqueous HCl. The mixture was extracted with Et₂O (3 x 15 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification by flash column chromatography (1:1 pentane/Et₂O) afforded the pure product as a colorless liquid (2.25 g, 90% yield). Spectral data were consistent with previous report (*67*).

Pentan-3-*d*-3-ol: To a suspension of LiAlD₄ (323 mg, 7.69 mmol, 0.25 equiv) in dry THF (5 mL) at 0 °C was added a solution of 3-pentanone (3.25 mL, 30.8 mmol, 1.0 equiv) in THF (5 mL) dropwise. The mixture was warmed to 23 °C and stirred an additional 3 h at 23 °C. Upon completion, the solution was cooled to 0 °C and quenched by addition of 1 M aqueous HCl. The mixture was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. Purification by flash column chromatography (1:1 pentane/Et₂O) afforded the pure product as a colorless liquid (2.2 g, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.57–1.37 (m, 4H), 1.34 (brs, 1H), 0.94 (t, *J* = 7.5

Hz, 6H) ppm; IR (film) 3351, 2963, 2930, 2877, 2149, 1460, 1378, 1328, 1266, 1173, 1147, 1040 cm⁻¹. Spectral data were consistent with previous report (*68*).

5-Methyl-5-phenethyldihydrofuran-2(3*H***)-one**: According to the general procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (11.2 mg, 10.0 μmol, 1 mol%), quinuclidine (11.1 mg, 100 μmol, 10 mol%), tetra-*n*-butylammonium phosphate (85.0 mg, 250 μmol, 25 mol%), 4-phenylbutan-2-ol (307 μL, 2.00 mmol, 2.0 equiv), methyl acrylate (90.0 μL, 1.00 mmol, 1.0 equiv), and CH₃CN (1.25 mL, 0.8 M) were used (30 h reaction time). The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless oil (120 mg, 59% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.27 (m, 2H), 7.23–7.16 (m, 3H), 2.82–2.53 (m, 4H), 2.14 (ddd, *J* = 12.9, 9.5, 7.9 Hz, 1H), 2.07–1.92 (m, 3H), 1.47 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 141.2, 128.5, 128.2, 126.1, 86.3, 42.9, 33.1, 30.2, 29.1, 25.6 ppm; IR (film) 3027, 2975, 2934, 1762, 1603, 1497, 1455, 1421, 1383, 1290, 1252, 1206, 1172, 1142, 1116, 1088, 1031, 1011 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₁₆NaO₂ [(M+Na)⁺] 227.1048, found 227.1049.

Ethyl (1S,2S)-2-(((tert-butyldimethylsilyl)oxy)methyl)cyclopropane-1-carboxylate: To a solution of ethyl 2-(diethoxyphosphoryl)acetate (4.21 mL, 21.2 mmol, 2.0 equiv) in DME (43 mL) at 25 °C was added n-BuLi (8.71 mL, 21.8 mmol, 2.05 equiv, 2.5 M solution in hexanes) dropwise over 10 minutes, according to the procedure of Bray and Minicone (69). To the resulting solution was added tert-butyldimethylsilyl (S)-(-)-glycidyl ether (2.00 g, 10.6 mmol, 1.0 equiv). The reaction mixture was heated to 130 °C for 20 h in a sealed pressure vessel. Upon completion, the reaction mixture was cooled to 25 °C, and saturated aqueous ammonium chloride (80 mL) was added. The mixture was extracted with diethyl ether (3 x 100 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was dry-loaded onto silica and purified by flash column chromatography (10:1 hexanes/EtOAc), which gave the silvl ether product as a colorless oil (2.74 g, 40% yield). ¹H NMR (300 MHz, CDCl₃) δ 4.12 (q, J = 7.1 Hz, 2H), 3.62 (qd, J = 10.8, 5.0 Hz, 2H), 1.70– 1.49 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.13 (ddd, J = 8.9, 4.9, 4.1 Hz, 1H), 0.93–0.84 (m, 10H), 0.04 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 63.3, 60.4, 25.9, 24.1, 18.3, 17.6, 14.3, 12.3, -5.3, -5.3 ppm. IR (film) 2956, 2931, 2858, 1726, 1467, 1380, 1316, 1255, 1177, 1089, 1039, 1006 cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₂₇O₃Si [(M+H)⁺] 259.1729, found 259.1728.

Ethyl (1*S***,2***S***)-2-(hydroxymethyl)cyclopropane-1-carboxylate (70): To a solution of the silyl ether (329 mg, 1.27 mmol, 1.0 equiv) in THF (25.4 mL, 0.05 M) at 0 °C was added tetra-***n***-butylammonium fluoride (1.0 M solution in THF, 1.40 mL, 1.40 mmol, 1.1 equiv) dropwise. The resulting solution was stirred at 0 °C for 1.5 h. Following addition of hexane (10 mL), Et₂O (20 mL) and water (50 mL), the organic layer was separated, dried (MgSO₄), filtered and concentrated** *in vacuo***. The residue was dry-loaded onto silica and purified by flash column chromatography (4:1→2:1 hexanes/EtOAc), which gave the product as a colorless liquid (160 mg, 87% yield). ¹H NMR (500 MHz, C₆D₆) \delta 3.94 (qd,** *J* **= 7.1, 1.7 Hz, 2H), 3.22 (dd,** *J* **= 11.4, 5.5 Hz, 1H), 3.02 (dd,** *J* **= 11.4, 6.6 Hz, 1H), 1.67 (dtdd,** *J* **= 8.8, 6.4, 5.5, 4.1 Hz, 1H), 1.51 (brs, 1H), 1.49 (ddd,** *J* **= 8.6, 4.8, 4.0 Hz, 1H), 1.15 (ddd,** *J* **= 8.9, 4.8, 4.1 Hz, 1H), 0.95 (t,** *J* **= 7.1 Hz, 3H), 0.51 (ddd,** *J* **= 8.4, 6.3, 4.1 Hz, 1H) ppm; ¹³C NMR (125 MHz, C₆D₆) \delta 174.1, 64.1, 60.8, 24.8, 18.7, 14.6, 12.8 ppm. IR (film) 3424, 2985, 1713, 1451, 1409, 1375, 1316, 1267, 1202, 1180, 1091, 1027 cm⁻¹. HRMS (ESI)** *m/z* **calcd for C₇H₁₂NaO₃ [(M+Na)⁺] 167.0684, found 167.0684.**

Ethyl 5-oxopentanoate: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (21.2 mg, 63.0 µmol, 25 mol%), ethyl (1*S*,2*S*)-2-(hydroxymethyl)cyclopropane-1-carboxylate (36.0 mg, 250 µmol, 1.0 equiv) and CH₃CN (313 µL, 0.8 M) were used (18 h reaction time). The product was isolated by flash column chromatography (4:1 hexanes/EtOAc) as a colorless liquid (8.0 mg, 22% yield), along with recovered starting material. Spectral data were consistent with previous report (*71*).

8-Ethvl 1-methyl **4-oxooctanedioate**: According to the general procedure, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (1.60 mg, 1.46 µmol, 1 mol%), quinuclidine (1.60 mg, 15.0 µmol, 10 mol%), tetra-n-butylammonium phosphate (12.4 mg, 36.0 µmol, 25 mol%), ethyl (15,25)-2-(hydroxymethyl)cyclopropane-1-carboxylate (21.0 mg, 146 µmol, 1.0 equiv), methyl acrylate (13.2 μ L, 146 μ mol, 1.0 equiv), and CH₃CN (364 μ L, 0.4 M) were used (24 h reaction time). The product was isolated by flash column chromatography (2:1 hexanes/EtOAc) as a colorless oil (6.3 mg, 30% yield), along with ethyl 5-oxopentanoate (6.1 mg, 29% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.12 (q, J = 7.2 Hz, 2H), 3.67 (s, 3H), 2.74–2.68 (m, 2H), 2.59 (t, J = 6.5 Hz, 2H), 2.53 (t. J = 7.3 Hz, 2H), 2.32 (t, J = 7.3 Hz, 2H), 1.91 (p, J = 7.2 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 208.1, 173.2, 173.1, 60.3, 51.8, 41.5, 37.0, 33.2, 27.7, 18.8, 14.2 ppm. IR (film) 2934, 1732, 1439, 1414, 1373, 1242, 1176, 1100, 1044 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₈NaO₅ [(M+Na)⁺] 253.1052, found 253.1054. The formation of this hydroacylation product presumably involves C-H abstraction from ethyl 5-oxopentanoate to generate the corresponding nucleophilic acyl radical.

Procedure: According to the General α -Alkylation Procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (5.60 mg, 5.00 µmol, 1 mol%), quinuclidine (5.60 mg, 50.0 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (42.0 mg, 125 µmol, 25 mol%), hexan-1-*d*-1-ol (103 mg, 1.00 mmol, 2.0 equiv), methyl acrylate (45.0 µL, 0.50 mmol, 1.0 equiv) and CH₃CN (0.63 mL, 0.8 M) were used. The products were isolated by flash column chromatography (18:2:1 CH₂Cl₂/hexanes/EtOAc) in the form of a colorless liquid, which consisted of a 1.6:1 ratio of A to B, as determined by NMR analysis (relative integrations of the signals at 4.5, 2.3 and 0.93–0.84 ppm were used).

Procedure: According to the General α -Alkylation Procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), tetrahydrofuran (61.0 µL, 0.75 mmol, 3.0 equiv), *d*₈-tetrahydrofuran (61.0 µL, 0.75 mmol, 3.0 equiv), benzyl acrylate (37.5 µL, 0.25 mmol, 1.0 equiv) and CH₃CN (0.63 mL, 0.4 M) were irradiated for 24 h. Purification by flash column chromatography (6:1 hexanes/EtOAc) afforded the products (**A** and **B**) in the form of a colorless oil (36.0 mg, 60% yield), which consisted of a 2:1 ratio of A to B (as determined by NMR analysis).

Kinetics Experiments

Typical procedure: An 8-mL glass vial equipped with a Teflon septum and magnetic stir bar was charged with Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (5.60 mg, 5.00 µmol, 1 mol%), quinuclidine (5.60 mg, 50.0 µmol, 10 mol%), the indicated tetra-*n*-butylammonium additive (125 µmol, 25 mol%), the indicated alcohol (1.00 mmol, 2.0 equiv), methyl acrylate (45.0 µL, 0.50 mmol, 1.0 equiv), methyl benzoate (32.0 µL, 0.5 equiv) as internal standard, and CH₃CN (0.63 mL, 0.8 M). The resulting solution was then sparged with N₂ for 2 minutes. The vial was sealed and placed approximately 3 inches away from a Kessil[®] LED illuminator (model H150 blue, http://www.kessil.com/horticulture/H150.php). The reaction mixture was stirred and irradiated for the indicated period of time, with the internal temperature maintained at approximately 27 °C by an electric fan placed approximately 10 inches above the vial. At the indicated time points, the reaction mixture was placed in the dark and an aliquot was removed by syringe and analyzed by ¹H NMR and/or GC. The reaction mixture was then degassed by N₂ bubbling for 2 minutes prior to resuming irradiation. Each data point represents an average value determined from at least three separate experiments.

Figure S1. Initial rate of alkylation of 1-hexanol with methyl acrylate in the presence of additives.

Figure S2. Initial rate of acrylate consumption in the reaction of 1-hexanol with methyl acrylate in the presence of additives.

Figure S3. Initial rate of alkylation of 3-pentanol as a function of initial conditions. rate = k[alcohol][acrylate], $k = 0.0051 \pm 0.0007 M^{-1} s^{-1}$

Figure S4. Initial rate of alkylation of D-3-pentanol as a function of initial conditions. rate = k[alcohol][acrylate], $k = 0.0044 \pm 0.0008 M^{-1} s^{-1}$; KIE = $k_H/k_D = 1$

Figure S5. Initial rate of alkylation of 3-pentanol as a function of initial conditions with 25 mol% TBAP. rate = k[alcohol][acrylate], $k = 0.004 \pm 0.001 \text{ M}^{-1}\text{s}^{-1}$

Figure S6. Initial rate of alkylation of D-3-pentanol as a function of initial conditions with 25 mol% TBAP. rate = k[alcohol][acrylate], $k = 0.004 \pm 0.001 \text{ M}^{-1}\text{s}^{-1}$, KIE = $k_H/k_D = 1$

Figure S7. Initial rate of conversion of 36 to 37 in the presence and absence of $Bu_4NPO_4H_2$ (average of three experiments).

HPLC Data

High-performance liquid chromatography (HPLC) was performed on an Agilent Technologies 1260 Infinity using a Chiralcel OD-H column.

According to the general α -alkylation procedure, Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.80 mg, 25.0 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (21.0 mg, 63.0 µmol, 25 mol%), (*R*)-4-phenylbutan-2-ol (77.0 µL, 0.50 mmol, 2.0 equiv), methyl acrylate (23.0 µL, 0.25 mmol, 1.0 equiv), and CH₃CN (0.31 mL, 0.8 M) were used. Upon completion, the solvent was removed under reduced pressure, the reaction mixture was diluted with hexanes/EtOAc, filtered over a short pad of silica gel, concentrated and analyzed by HPLC (OD, 5% IPA/hexanes, 1.0 mL/min, 270 nm), which indicated >99% ee of the unreacted (*R*)-4-phenylbutan-2-ol (t_R = 10.2 minutes).

HPLC trace of racemic 4-phenyl-2-butanol:

Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.80 mg, 2.50 µmol, 1 mol%), quinuclidine (2.50 mg, 25.0 µmol, 10 mol%), tetra-*n*-butylammonium phosphate (21.0 mg, 63.0 µmol, 25 mol%), (*R*)-4-phenylbutan-2-ol (77.0 µL, 0.50 mmol, 2.0 equiv), and CH₃CN (0.31 mL, 0.8 M) were subjected to the standard conditions in the absence of methyl acrylate. After 24 h, the solvent was removed under reduced pressure, the reaction mixture was diluted with hexanes/EtOAc, filtered over a short pad of silica gel, concentrated and analyzed by HPLC (OD, 5% IPA/hexanes, 1.0 mL/min, 270 nm), which indicated >99% ee of the unreacted (*R*)-4-phenylbutan-2-ol (t_R = 10.2 minutes).

HPLC trace of racemic 4-phenyl-2-butanol:

HPLC trace of unreacted 4-phenyl-2-butanol upon completion of the reaction:

Determination of ${}^{1}J_{CH}$

Solutions of 1-hexanol (10 μ L) in CDCl₃ (0.8 mL, 0.1 M) were prepared and either quinuclidine (8.9 mg, 0.1 M), tetra-*n*-butylammonium phosphate (27 mg, 0.1 M), or both quinuclidine and tetra-*n*-butylammonium phosphate were added. Proton-decoupled ¹³C NMR spectra were acquired at 125.85 MHz. Data were recorded using a 31,250 Hz spectral width and a 1.05 ms acquisition time.

DFT Computational Information

Computational Details

_

All calculations used DFT methodology as implemented in the Gaussian 09 series of computer programs (72, 73). We employed the unrestricted B3LYP functional (74–78). Allelectron, split-valence double- ζ plus polarization function 6-31G(d,p) basis sets were used (79– 82). Calculations were performed using the CPCM solvation model in acetonitrile. All complexes underwent geometry optimization, and stationary points were subjected to normal mode analysis.

Table S1: Thermodynamic parameters; geometries and frequencies were calculated with UB3LYP/6-31G(d,p) in all cases. Energies are given in hartree particle⁻¹.

Entry	Job Name	E+ZPE	G	Н	S
1	Hexanol	-312.139768	-312.174368	-312.129280	94.896
2	Hexanol radical	-311.493696	-311.529223	-311.483120	97.033
3	Hexanol-dihydrogen phosphate	-955.856757	-955.908365	-955.838840	146.327
4	Hexanol–dihydrogen phosphate radical	-955.214722	-955.262616	-955.197645	136.744
5	Hexanol-diphenyl phosphate	-1417.801803	-1417.865799	-1417.775091	190.912
6	Hexanol–diphenyl phosphate radical	-1417.159623	-1417.225504	-1417.132786	195.141
7	Hexanol-trifluoroacetate	-838.512028	-838.563924	-838.493766	147.660
8	Hexanol-trifluoroacetate radical	-837.869935	-837.919945	-837.852523	141.901
9	Tetrahydrofuran	-232.352810	-232.379496	-232.348279	65.702
10	Tetrahydrofuran radical	-231.713892	-231.742085	-231.708105	71.517
11	Tetrahydrofuran–dihydrogen phosphate	-876.073258	-876.115974	-876.060250	117.283
12	Tetrahydrofuran–dihydrogen phosphate radical	-875.427628	-875.468069	-875.415398	110.856
13	Methanol	-115.689753	-115.712526	-115.685469	56.947
14	Methanol radical	-115.040577	-115.063574	-115.036284	57.438

Figure S8. Isodesmic reactions used for our thermochemical analyses of bond weakening.

A. Isodesmic reactions for C–H BDE determination

B. DFT estimates of C-H bond weakening

Table S2. Analysis of the isodesmic reactions above. Energies are provided in kcal mol^{-1} using the conversion factor 627.509 kcal mol^{-1} per hartree and are rounded off after the third decimal place. Entropies are provided in e.u. and are rounded off after the third decimal place.

Rxn	Entries for Δ	ΔE+ZPE	ΔG	ΔH	ΔS
A. Hexanol	=(2+13)-(1+14)	-1.948	-2.389	-1.898	1.646
B. Hexanol–dihydrogen phosphate	=(4+13)-(3+14)	-4.481	-2.010	-5.014	-10.074
B. Hexanol–diphenyl phosphate	=(6+13)-(5+14)	-4.390	-5.432	-4.317	3.738
B. Hexanol-trifluoroacetate	=(8+13)-(7+14)	-4.445	-3.121	-4.984	-6.250
A. Tetrahydrofuran	=(10+13)-(9+14)	-6.437	-7.242	-5.654	5.324
B. Tetrahydrofuran– dihydrogen phosphate	=(12+13)-(11+14)	-2.225	-0.657	-2.719	-6.918

Computed values for the bond weakening or strengthening of hexanol and tetrahydrofuran can be determined by taking the $\Delta\Delta$ of the Reactions A and B above; the results are shown below:

Quantity	ΔΔΕ+ΖΡΕ	ΔΔG	ΔΔΗ	ΔΔS
Hexanol				
Dihydrogen phosphate Bond Weakening	-2.533	0.379	-3.116	-11.720
Diphenyl phosphate Bond Weakening	-2.442	-3.043	-2.419	2.092
Trifluoroacetate Bond Weakening	-2.497	-0.732	-3.086	-7.896
Tetrahydrofuran				
Dihydrogen phosphate Bond Strengthening	4.212	6.585	2.935	-12.242

Taking the known literature value of 96 kcal mol⁻¹ as the BDE of the α -C–H bond in methanol (83), the corresponding α -C–H bond BDE in hexanol is calculated to be ~94.1 kcal mol⁻¹. The tabulated Δ H values at 6-31G(d,p) predicts hexanol α -C–H BDE bond-weakening of 3.1, 2.4, and 3.1 kcal mol⁻¹ when OH-hydrogen bound to dihydrogen phosphate, diphenyl phosphate, and trifluoroacetate, respectively. This decrease in BDE corresponds to an α -C–H BDE of 91.0, 91.7, and 91.0 kcal mol⁻¹, respectively.

The α -oxy C–H bond of tetrahydrofuran is calculated to have a BDE of ~90.3 kcal mol⁻¹. Conversely, when hydrogen-bound to dihydrogen phosphate, the tabulated Δ H values at 6-31G(d,p) predict a tetrahydrofuran α -C–H BDE bond-strengthening of 2.9 kcal mol⁻¹. This increase in BDE corresponds to an α -C–H BDE of 93.2 kcal mol⁻¹.

Table S3: Optimized geometries in Cartesian coordinates (Å) and energies (hartree) for stationary points. All energies and frequencies calculated at UB3LYP/6-31G(d,p); all geometries optimized at UB3LYP/6-31G(d,p).

Hexanol (entry 1)

E(UB3LYP)	-312.333243
Zero-point correction=	0.193474
Thermal correction to Energy=	0.203018
Thermal correction to Enthalpy=	0.203962
Thermal correction to Gibbs Free Energy=	0.158874
Sum of electronic and zero-point Energies=	-312.139768
Sum of electronic and thermal Energies=	-312.130224
Sum of electronic and thermal Enthalpies=	-312.129280
Sum of electronic and thermal Free Energies=	-312.174368

Charge = 0; Multiplicity = 1

С	-2.58511700	0.46825200	0.00445100
Н	-2.60950800	1.09009700	0.91085600
0	-3.78265400	-0.32152700	-0.08128900
Н	-3.82036700	-0.90208600	0.69161700
С	-1.31044500	-0.37288300	-0.02686900
Н	-1.31584500	-1.06410900	0.82838300
Н	-1.31663600	-0.99031900	-0.93489800
С	-0.03589900	0.48216700	0.01473000
Н	-0.03768700	1.17767500	-0.83672100
Н	-0.04322600	1.10423800	0.92117700
С	1.25408600	-0.34846800	-0.01597800
Н	1.26288800	-0.97073700	-0.92264700
Н	1.25677600	-1.04513500	0.83491900
С	2.53108900	0.50139800	0.02472900
Н	2.52764200	1.19859900	-0.82461000
Н	2.52219700	1.12242000	0.93127600
С	3.81561900	-0.33509700	-0.00779700
Н	3.86993200	-0.94007400	-0.92092000
Н	4.70758600	0.30031000	0.02465600
Н	3.86255100	-1.02011000	0.84735300
Н	-2.62107400	1.13923600	-0.85972500
Hexanol radical (entry 2)

E(UB3LYP)			-311.6731	44
Zero-point correc	tion=		0.179447	
Thermal correctio	n to Energy=		0.189079	
Thermal correctio	n to Enthalpy	=	0.190024	
Thermal correctio	n to Gibbs Fr	ee Energy=	0.143920	
Sum of electronic	and zero-poi	nt Energies=	-311.4936	596
Sum of electronic	and thermal	Energies=	-311.4840)64
Sum of electronic	and thermal	Enthalpies=	-311.4831	20
Sum of electronic	and thermal	Free Energies=	-311.5292	223
	1			
Charge = 0; Multip	licity = 2			
С	-2.60619800	0.41371400	0.01798500	
Н	-2.69096500	1.34772800	0.57289100	
0	-3.76588000	-0.33036400	-0.09543800	
Н	-4.53603100	0.24763100	-0.00405900	
С	-1.35186000	-0.39062500	0.06198800	
Н	-1.30669500	-0.97870400	0.99850000	
Н	-1.37046600	-1.13049200	-0.75134600	
С	-0.08489400	0.47246800	-0.04706400	
Н	-0.10532000	1.02501700	-0.99610400	
Н	-0.09214000	1.22775400	0.75150000	
С	1.21120100	-0.34304700	0.04131900	
Н	1.21697600	-1.10209900	-0.75451000	
Н	1.22947100	-0.89496700	0.99236900	
С	2.48045200	0.51204900	-0.06948400	
Н	2.46137600	1.06442400	-1.01923800	
Н	2.47551900	1.26988900	0.72618400	
С	3.77262700	-0.30869500	0.01680600	
Н	3.82127200	-1.05446600	-0.78580800	
Н	4.65860700	0.33025900	-0.06780600	
Н	3.83747600	-0.84424800	0.97164000	

Hexanol-dihydrogen phosphate (entry 3)

E(UB3LYP)		-956	.087841
Zero-point correction=		0.231084	
Thermal correction to Energy	=	0.248057	
Thermal correction to Enthal	ру=	0.249001	
Thermal correction to Gibbs 1	Free Energy=	0.179476	
Sum of electronic and zero-po	oint Energies=	-955	.856757
Sum of electronic and thermal	l Energies=	-955	.839784
Sum of electronic and thermal	l Enthalpies=	-955	.838840
Sum of electronic and therma	l Free Energies=	-955	.908365
Charge = -1; Multiplicity = 1	1		
C 0.66095700	0 1.79763200	0.37859900	
н 1.13511200	0 2.72408900	0.72552400	
Н 0.33042200	0 1.24709200	1.27300700	
0 -0.4650430	0 2.18665500	-0.40686200	
н -1.0707190	0 1.41361700	-0.50185900	
C 1.6785560	0.95887900	-0.39937800	
Н 1.18790400	0 0.04415400	-0.75973700	
Н 1.98915500	0 1.52323900	-1.28933400	
C 2.91095200	0.58839900	0.43696000	
Н 3.38620500	0 1.50744100	0.81002200	
Н 2.5927260	0.02470100	1.32591400	
C 3.9497030	0 -0.23561700	-0.33605100	
Н 4.26934300	0.32737600	-1.22510100	
Н 3.4774880	0 -1.15615400	-0.70929300	
C 5.1847630	0 -0.60527800	0.49616100	
Н 5.65543200	0.31428300	0.87100600	
Н 4.86642700	0 -1.17025200	1.38329700	
C 6.2186850	0 -1.42434600	-0.28572900	
Н 6.5801580	0 -0.87117000	-1.16100400	
Н 7.08734500	0 -1.67065200	0.33501300	
н 5.7869680	0 -2.36667800	-0.64420500	
P -3.3714460	0 -0.38819600	0.07668900	
0 -2.1564150	0 0.07215600	-0.71527900	
0 -3.9892370	0 0.44169000	1.16873300	
0 -4.57954200	0 -0.73515600	-0.99746200	
0 -3.0241030	0 -1.86200700	0.74148400	
н -2.3887680	0 -2.35212500	0.19884200	
н -4.2204710	0 -1.02073600	-1.85070800	

F (IIR3I VD)			-955 /31557
Zero-point correction	1=	0.2	16835
Thermal correction to	Energy=	0.2	32968
Thermal correction to) Enthalpy=	0.23	33912
Thermal correction to	Gibbs Free Ener	.1e	58941
Sum of electronic and	d zero-point Ener	rgies=	-955.214722
Sum of electronic and	d thermal Energie	es=	-955.198589
Sum of electronic and	d thermal Enthalp	pies=	-955.197645
Sum of electronic and	d thermal Free Er	nergies=	-955.262616
Charge = -1 ; Multipli	city = 2		
С	0.68321900	0.44986500	-0.16005000
Н	0.43403000	-0.31888200	-0.89441800
0	-0.28379000	1.38855700	0.08070100
Н	-1.18115700	1.03043400	-0.17146600
С	2.09416300	0.92094400	-0.02116900
Н	2.33837800	1.64983000	-0.81896300
Н	2.19573600	1.47586800	0.92324000
С	3.12105700	-0.22117300	-0.06367500
Н	2.91619600	-0.92126000	0.75790800
Н	2.98975900	-0.79121800	-0.99468200
С	4.57315300	0.26414000	0.02981500
Н	4.70427200	0.83877000	0.95849700
Н	4.77657700	0.96329400	-0.79450600
С	5.60413900	-0.87179900	-0.00818300
Н	5.40066000	-1.57137000	0.81447100
Н	5.47517800	-1.44492900	-0.93686300
С	7.05239600	-0.37791600	0.08940200
Н	7.21974200	0.17180600	1.02356600
Н	7.76285600	-1.21154200	0.06124100
Н	7.29625200	0.29667900	-0.74025100
P	-3.76848100	-0.17406200	0.12235600
0	-2.64734500	0.49291600	-0.66651700
0	-3.90713300	-0.02053600	1.61116000
0	-5.20044100	0.30050400	-0.54840800
0	-3.72183100	-1.79588000	-0.18418100
Н	-3.38872900	-1.98139300	-1.07476600
Н	-5.09698100	0.51599800	-1.48722600

Hexanol-dihydrogen phosphate radical (entry 4)

E(UB3LYP)		,	-1418.194737
Zero-point correc	tion=		0.392933
Thermal correctio	n to Energy=		0.418702
Thermal correctio	n to Enthalpy	=	0.419646
Thermal correctio	n to Gibbs Fr	ee Energy=	0.328937
Sum of electronic	and zero-poi	nt Energies=	-1417.801803
Sum of electronic	and thermal	Energies=	-1417.776035
Sum of electronic	and thermal	Enthalpies=	-1417.775091
Sum of electronic	and thermal	Free Energies=	-1417.865799
Champe - 1. Mult			
Charge = -1; Mult	$\frac{1}{2} \frac{1}{2} \frac{1}$	1 (5200000	1 74760700
	-3.00010200	-1.65209000	1.74769700
п	-3.00910200	-2.00740300	2.30703000
	-2.70757000	-0.01309200	1 70072900
0	-1.16077700	-2.49195000	1 14229000
n C	-3 82601700	-2.03788900 -1.68855800	0 45935300
Ч	-3.19589100	-1.35967800	-0 37850500
п ц	-1 10836300	-2 73010300	0.25339200
C C	-5.08457300	-0.81316200	0.53223000
Ч	-5 70219100	-0.01310200 -1.13425700	1 38376300
11 H	-1 79370900	0 22695900	0 73892800
C	-5 93204200	-0.85402500	-0 74660100
C H	-6 22679500	-1 89334000	-0 95270800
11 H	-5 31585300	-0 53507300	-1 5995900
C	-7 18996300	0.02214600	-0 67871500
C H	-7 80576500	-0.29631800	0 17399800
H	-6 89544300	1 06067200	-0 47298500
C	-8 03101600	-0 02478500	-1 95985900
C H	-8 36593300	-1 04669700	-2 17508600
Н	-8 92199000	0 60753400	-1 87709400
Н	-7 45371400	0 32391900	-2 82465900
P	1.09222100	-0.25465300	0.47531300
0	0.08875400	-1.33277500	0.13759200
0	1.65287500	-0.10961200	1.86232100
0	2.32955400	-0.29277900	-0.64451500
0	0.39966800	1.14663900	-0.06416200
С	0.88208300	2.43550100	0.06442900
C	-0.00762500	3.45156900	-0.30676700
С	2.16984600	2.75310400	0.51126800
С	0.39226500	4.78688500	-0.23335500
Н	-1.00109400	3.18156100	-0.65075100
С	2.55611600	4.09628400	0.58175400
Н	2.85634700	1.96987700	0.80607600
С	1.67714800	5.11807500	0.21208400
Н	-0.30398300	5.56824300	-0.52420900
Н	3.55640600	4.33839000	0.92960700
Н	1.98752900	6.15680300	0.26991000
С	3.36223400	-1.20638900	-0.65768300
С	4.47967400	-0.86249200	-1.42936400
С	3.32370300	-2.43156300	0.01974900
С	5.55843700	-1.74384200	-1.52097500
Н	4.48818500	0.09068400	-1.94857100
С	4.41423000	-3.30265600	-0.07631500
Н	2.45647400	-2.70638100	0.60919700
С	5.53386700	-2.96845500	-0.84341800

Н	6.42064700	-1.46939900	-2.12198000
Н	4.37975300	-4.25075700	0.45279700
Н	6.37446500	-3.65182300	-0.91391400

Hexanol–diphenyl phosphate radical (entry 6)

E(UB3LY)	P)		-1417.538299
Zero-po	int correction=		0.378676
Thermal	correction to Energy=		0.404569
Thermal	correction to Enthalp	v=	0.405513
Thermal	correction to Gibbs F	ree Enerav=	0.312795
Sum of e	electronic and zero-po	int Energies=	-1417.159623
Sum of e	electronic and thermal	Energies=	-1417 133730
Sum of	electronic and thermal	Enthalpies=	-1417 132786
Sum of	electronic and thermal	Free Energies=	-1417 225504
built of		TICC Encryrob	111, 220001
Chamma -	1. Multiplicity - 2		
charge -	-1; Multiplicity -2	0 05400200	0 01 5 0 8 0 0
	2 00462600	-0.83400300	-0.01390000
н	2.90402000	-0.19672900	0.011/0000
U	2.51501500	-1.75800700	-0.41269000
H	1.41085800	-1.45626300	-0.11922200
C	4.68191400	-1.29363400	-0.1/5/3600
H	4.90643000	-2.12547700	0.52069600
H	4.81726900	-1./1191100	-1.18418600
C	5.69699000	-0.16448100	0.05837800
H	5.51805900	0.63881000	-0.66941500
H	5.52596800	0.2/544100	1.05145800
C	7.15549200	-0.62892300	-0.04187100
H	7.32712800	-1.07464200	-1.03272200
H	7.33185800	-1.43106400	0.68963500
С	8.17527400	0.49415500	0.18825700
H	8.00223700	1.29493900	-0.54415500
Н	8.00239300	0.94108700	1.17725000
С	9.63039500	0.02086500	0.09089000
H	9.84398000	-0.39933000	-0.89935800
Н	10.33150000	0.84546100	0.26116600
Н	9.84334700	-0.75697600	0.83413100
P	-1.17639600	-0.20937200	-0.17801900
0	-0.07388000	-1.02260700	0.46618700
0	-1.39718000	-0.23943700	-1.66401500
0	-2.60581500	-0.50201400	0.62497200
0	-0.94763800	1.32205700	0.39709600
С	-1.70673200	2.44807200	0.13274500
С	-1.35982400	3.59180900	0.86251500
С	-2.75367100	2.49086300	-0.79492400
С	-2.06421200	4.78079300	0.66569100
H	-0.54349100	3.53441500	1.57560900
С	-3.45229500	3.68929900	-0.97955700
Н	-3.00774900	1.60888600	-1.36948300
С	-3.11649000	4.83669500	-0.25562700
Н	-1.78926200	5.66348500	1.23588000
H	-4.26483300	3.71905200	-1.70006700
H	-3.66460300	5.76145500	-0.40741100
С	-3.42274500	-1.59155900	0.39272500
С	-4.79264300	-1.40363200	0.60928700
С	-2.93167700	-2.84482500	0.00806300
С	-5.67385900	-2.47335900	0.43690000
Н	-5.15019800	-0.42407100	0.91036600
С	-3.82611900	-3.90548500	-0.16924500
Н	-1.86781000	-2.99086300	-0.14307600
С	-5.19670600	-3.72884300	0.04350100

Н	-6.73592000	-2.32163000	0.60676000
Н	-3.44224800	-4.87601900	-0.47038600
Н	-5.88370900	-4.55825000	-0.09332200

Hexanol-trifluoroacetate (entry 7)

E (UB3LYP)	.)	-838.732165
Zero-point correction=		0.220137
Thermal correction to Ener	qy=	0.237455
Thermal correction to Enth	alpy=	0.238399
Thermal correction to Gibb	s Free Energy=	0.168241
Sum of electronic and zero	-point Energies=	-838.512028
Sum of electronic and ther	mal Energies=	-838.494710
Sum of electronic and ther	mal Enthalpies=	-838.493766
Sum of electronic and ther	mal Free Energies=	-838.563924
Charge = -1; Multiplicity	= 1	
C 1.23743	100 2.23653900	0.41416200
н 1.89411	000 3.11481200	0.43493500
н 1.01978	400 1.96867000	1.45981100
0 0.04123	100 2.64197200	-0.25167600
н -0.65862	900 1.96670000	-0.08700600
C 1.95133	500 1.07402300	-0.28010400
н 1.27504	900 0.20867400	-0.31469700
Н 2.15414	900 1.35915000	-1.32152800
C 3.26111	900 0.67666300	0.41484600
н 3.93019	900 1.54864000	0.45456600
н 3.05150	600 0.40253700	1.45899700
C 3.98976	700 -0.48548700	-0.27297000
н 4.19951	400 -0.21389600	-1.31787200
н 3.32299	600 -1.35927800	-0.31110200
C 5.30160	900 -0.88334200	0.41693100
н 5.96903	300 -0.01099200	0.45242600
н 5.09268	200 -1.15190200	1.46188500
C 6.02124	300 -2.04772300	-0.27372800
н 6.27233	300 -1.79721700	-1.31149700
н 6.95323	600 -2.30445800	0.24206000
н 5.39208	600 -2.94582600	-0.29234600
0 -1.94082	300 0.83329600	0.38040900
0 -2.50626	600 0.14976400	-1.71408600
C -3.64748	900 -0.78646700	0.17716900
C -2.58200	200 0.16665300	-0.47284700
F -4.57861	900 -0.08301400	0.88053000
F -4.32864	300 -1.53795700	-0.71949500
F -3.07265	600 -1.65580700	1.05379200

Hexanol–trifluoroacetate radical (entry 8)

E(UB3LYP) -838.075951 0.206016 Zero-point correction= 0.222483 Thermal correction to Energy= 0.223428 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.156006 -837.869935 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -837.853468 Sum of electronic and thermal Enthalpies= -837.852523 Sum of electronic and thermal Free Energies= -837.919945 Charge = -1; Multiplicity = 2 С 1.12654700 0.56641900 0.23502300 Н 0.75681500 -0.45126500 0.09394800 0 0.20700800 1.56830000 0.07491300 Η -0.716221001.20798500 0.19471200 С 2.53210300 0.90664000 -0.14000400 Η 2.61125400 1.06766900 -1.23322700 Η 2.80387500 1.86915200 0.31833000 0.27662600 С 3.54468400 -0.17106800 Η 3.50749600 -0.29826100 1.36727800 Η 3.24402000 -1.13588600 -0.15662900 С 4.98343200 0.14601300 -0.15032600 Η 5.28421400 1.11333200 0.27831800 Η 5.01988000 0.27008100 -1.24253900 С 5.99726600 -0.92696200 0.26840800 Η 5.96027100 -1.05190900 1.35959700 Н 5.69762900 -1.89320400 -0.16083000 С 7.43380900 -0.60371500 -0.15897100 Η 7.77473900 0.34034500 0.28300400 Η -1.38901200 0.15400400 8.13086200 Η 7.50912100 -0.50585100 -1.24872900 0.50528500 0 -2.25491900 0.64959000 0 -2.67748000 -0.11870400 -1.59318900 С -4.35002500 -0.36336300 0.10958200 С -2.94215700 0.10383500 -0.40072800 F -5.05412000 0.66549800 0.65482900 F -5.12917700 -0.86037800 -0.89488000 F -4.23167900 -1.31322300 1.07877300

Tetrahydrofuran (entry 9)

E(UB3LYP)			-232.469114
Zero-point correc	tion=		0.116304
Thermal correctio	n to Energy=		0.119890
Thermal correctio	n to Enthalpy	y=	0.120834
Thermal correctio	n to Gibbs Fi	ree Energy=	0.089617
Sum of electronic	and zero-po:	int Energies=	-232.352810
Sum of electronic	and thermal	Energies=	-232.349224
Sum of electronic	and thermal	Enthalpies=	-232.348279
Sum of electronic	and thermal	Free Energies=	-232.379496
Charge = 0; Multip	licity = 1		
С	-1.19219200	0.45845900	0.0000000
0	0.0000000	1.26210700	-0.0000200
С	1.19219200	0.45846000	0.0000000
С	0.77463100	-1.02598200	0.0000100
С	-0.77463100	-1.02598300	0.0000000
Н	-1.78158400	0.71892200	0.88754500
Н	-1.78158600	0.71892100	-0.88754300
Н	1.78158500	0.71892100	-0.88754400
Н	1.78158500	0.71892300	0.88754300
Н	1.16863800	-1.54056800	-0.88045100
Н	1.16863700	-1.54056600	0.88045500
Н	-1.16863700	-1.54056800	-0.88045300
Н	-1.16863800	-1.54056800	0.88045300

Tetrahydrofuran radical (entry 10)

E(UB3LYP)			-231.816865
Zero-point correctio	on=	0.10	02973
Thermal correction	to Energy=	0.10	07816
Thermal correction	to Enthalpy=	0.10	08760
Thermal correction	to Gibbs Free Ener	.0.0	74780
Sum of electronic an	nd zero-point Ener	rgies=	-231.713892
Sum of electronic an	nd thermal Energie	es=	-231.709049
Sum of electronic a	nd thermal Enthalp	pies=	-231.708105
Sum of electronic a	nd thermal Free Er	nergies=	-231.742085
Charge = 0; Multiplie	city = 2		
С	0.60097800	-1.09784000	0.04962400
0	-0.76630000	-0.99398500	-0.11679000
С	-1.14991800	0.37553700	0.17224200
С	0.07414800	1.20924400	-0.21244700
С	1.24671800	0.25904300	0.13561300
Н	1.02966100	-1.98374400	-0.40653900
Н	-2.04941000	0.59022000	-0.40751400
Н	-1.37962900	0.45564300	1.24244000
Н	0.06131100	1.42128100	-1.28650400
Н	0.11406200	2.15930400	0.32622300
Н	2.09523700	0.36690100	-0.55024100
Н	1.62760600	0.46638100	1.14626300

Tetrahydrofuran-dihy	drogen phosphate (en	try 11)		076 000001
E (UB3LYP)	·		0 1	-8/6.228231
Zero-point correction	to Energy		0.13	549/3
Thermal correction	to Enthalpy=		0.10	57037 67081
Thermal correction	to Gibbs Free Ener	av=	0.1	12256
Sum of electronic a	and zero-point Ener	gies=	•••	-876.073258
Sum of electronic a	and thermal Energie	s=		-876.061194
Sum of electronic a	and thermal Enthalp	ies=		-876.060250
Sum of electronic a	and thermal Free En	ergies=		-876.115974
Charge = -1; Multip	plicity = 1			
С	-2.54631200	1.249204	100	0.06601500
0	-1.49691400	0.420128	300	-0.50558800
С	-1.91733000	-0.96991	900	-0.52320400
С	-3.11407200	-1.046710	000	0.42283200
С	-3.76319200	0.333864	100	0.22798100
Н	-2.19365400	1.632111	L00	1.03139800
Н	-2.71912900	2.092538	300	-0.60855300
Н	-2.19594300	-1.236188	300	-1.55061700
Н	-1.06536800	-1.581840	000	-0.21574400
Н	-3.78364300	-1.87565	500	0.17808800
Н	-2.77613000	-1.170062	200	1.45778100
Н	-4.37392800	0.342898	300	-0.68146100
Н	-4.39581600	0.635416	500	1.06708000
0	0.98330900	0.98873	00	0.47802300
H	0.11045400	0.742222	200	0.08157500
P	2.22285000	0.055980	0.00	-0.05419500
0	3 48970200	0 670450	000	0 50419600
0	1,94634500	-1.398764	100	0.70969300
0	2 06623100	-0 240030	500	-1 53066000
Ч	2 18646800	-1 34384	300	1 64631700
	2.10010000	T.0 100 1		T.0100T/00

Tetrahvdrofuran-dihv	drogen phosphate rac	lical (entry 12)	
E (UB3LYP)	8 1 1		-875.568646
Zero-point correcti	on=	0.1	41018
Thermal correction	to Energy=	0.1	52304
Thermal correction	to Enthalpy=	0.1	53248
Thermal correction	to Gibbs Free Ener	gy= 0.10	0576
Sum of electronic a	and zero-point Ener	gies=	-875.427628
Sum of electronic a	and thermal Energie	s=	-875.416342
Sum of electronic a	and thermal Enthalp	les=	-875.415398
Sum of electronic a	and thermal Free Er	ergies=	-8/5.468069
Charge = -1; Multipl	licity = 2		
С	-2.39773800	1.21083000	0.12213300
0	-1.55835200	0.20722700	0.58173000
С	-2.05539800	-1.06813400	0.08178100
С	-3.56427600	-0.85942500	-0.04678200
С	-3.66719600	0.63563100	-0.43847100
Н	-2.29035700	2.14744800	0.65742300
Н	-1.58117500	-1.26752400	-0.88616200
Н	-1.75742600	-1.83315800	0.80002700
Н	-4.00989500	-1.52888000	-0.78642300
Н	-4.05132500	-1.03531300	0.91756400
Н	-3.71467300	0.74792500	-1.53135600
Н	-4.56274700	1.11786400	-0.03033600
0	1.18016300	0.72592200	0.96118400
Н	0.23997900	0.52355500	0.76409300
P	2.21160400	0.09177600	-0.15221300
0	3.58355600	0.63232500	0.18880200
0	2.16847100	-1.53617400	0.19333800
0	1.62394900	0.21670400	-1.54091000
Н	2.67892400	-1.72999300	0.99324100

Methanol (entry 13)

E(UB3LYP) -115.740948 Zero-point correction= 0.051195 Thermal correction to Energy= 0.054535 Thermal correction to Enthalpy= 0.055479 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= 0.028421 -115.689753 Sum of electronic and thermal Energies= -115.686413 Sum of electronic and thermal Enthalpies= -115.685469 Sum of electronic and thermal Free Energies= -115.712526 Charge = 0; Multiplicity = 1 С 0.67261600 -0.02001600 0.00000200 Η 1.09060400 0.98877300 -0.00115900 Η 1.02497200 -0.54815300 0.89430800 Η -0.55011600 -0.89320500 1.02479100 0.12340300 Ο -0.75320500 0.00000400 Η -1.15042300 -0.75763400 0.00000900

Methanol radical (entry 14)

E(UB3LYP)				-115.077784
Zero-point	t correction	0.0	37207	
Thermal co	orrection to	Energy=	0.0	40556
Thermal co	prrection to	Enthalpy=	0.0	41500
Thermal co	prrection to	Gibbs Free Ene	rgy= 0.0	14209
Sum of ele	ectronic and	zero-point Ene	rgies=	-115.040577
Sum of ele	ectronic and	thermal Energi	es=	-115.037228
Sum of ele	ectronic and	thermal Enthal	pies=	-115.036284
Sum of ele	ectronic and	thermal Free E	nergies=	-115.063574
Charge = 0; Multiplicity = 2				
С		0.68871700	0.02802900	-0.06361500
Н		1.23909500	-0.88747800	0.11253400
Н		1.11332800	1.00117500	0.16024700
0		-0.67209300	-0.12706800	0.01883900
Н		-1.10797900	0.73467200	-0.04180700

Figure S9. Reaction coordinate diagram showing the proposed effect of TBAP on C–H abstraction and C–C bond formation.