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1 Formal definitions

Throughout, we write N for healthy mood and D for depression. Letters A,B, . . . ∈ {N,D} and
overlining is used as follows:

A =

{
N if A = D ,

D if A = N .
(1)

Let individuals be labelled with indices i, j, . . . ∈ {1, . . . , n}. At (discrete) time t individual
i has state Xt

i ∈ {N,D}. These are connected on a network with adjacency matrix G with
elements

Gij =

{
1 if individual i named j as a friend,

0 otherwise.
(2)

Our general N -transmits model is of a discrete-time Markov chain Xt = (Xt
i ) with transition
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probabilities
P
[
Xt+1
i = D

∣∣Xt
i = N

]
= p∑

j GijI{Xt
j=N} ,

P
[
Xt+1
i = N

∣∣Xt
i = D

]
= q∑

j GijI{Xt
j=N} ,

(3)

where I is an indicator function

I{ω} =

{
1 if ω is true,

0 otherwise.
(4)

In the no transmission model, pk and qk are independent of k and in the D-transmits model
we exchange D for N on the right-hand side of (3). We will often be interested in just two
timepoints, which we will write as t and t+ 1 in general.

2 Simulation methods

The Markov chain defined by (3) can be simulated using standard Monte Carlo methods. Note
that since we consider a situation where

0 < pk, qk < 1,∀k, (5)

then we can get from any state to any other in a finite number of steps (the chain is irreducible)
and the expected time to return to any state will be finite (all states are non-null persistent) and
hence by e.g. Theorems (6.4.3) and (6.4.17) of Grimmett and Stirzaker (2001), there will be a
unique stationary distribution π that describes the behaviour of the chain at large times.

To sample from this distribution, we perform discrete-time Monte Carlo simulation of the models
that are specified by values of pk, qk on a directed network of named friends constructed from
the n = 3084 individuals in the dataset satisfying our inclusion criteria at the first time point
(wave 1). Depending on the simulated output required, we took 104 time-separated samples of
either network pairs at a single time point or temporally adjacent node-level state transitions
from the stationary distribution for each model.
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3 Prevalence of D → D pairs
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Fig. S1: Number of D → D edges for the stationary distributions of the models versus real data.Asterisks
above a plot denote a significant statistical difference at the 5% level, corresponding to p < 0.01 using
the Bonferroni method to account for multiple testing. Observed data could be plausibly generated by
both transmission (p = 0.59) and no transmission (p = 0.60) models.

4 Dependence on degree
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Fig. S2: Features of the transmission and no transmission models as compared to data. (a) out-degree
of individuals with depressive symptoms; (b) in-degree of individuals with depressive symptoms; (c)
out-degree of not depressed individuals; (d) in-degree of not depressed individuals.
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5 Goodness-of-fit

5.1 Residual error calculation

For logistic regression, a standard approach to assessing goodness-of-fit is the Hosmer-Lemeshow
(HL) test, which is based on the distribution of residual errors (Hosmer and Lemeshow, 2005)
– i.e. the differences between the observed and the model values. Our model is not a standard
regression, and so we test goodness-of-fit in a similar manner to the HL test but with assumptions
more appropriate for our model. In particular, we define a residual error function stratified by
number of friends,

EA =

(
10∑
k=0

(
Y A→A
k −XA→A

k (θ)
)2)1/2

, (6)

where Y A→A
k is the observed number of state transitions from A to A of individuals with k

friends in state N , and XA→A
k (θ) is the modelled number of such events given parameters θ;

explicitly

Y A→B
k =

∑
i

I{
∑

j Gij = k}I{Y t+1
i = B}I{Y t

i = A} ,

XN→D
k (θ) = pk(θ)

∑
i

I{
∑

j Gij = k}I{Xt
i = N} ,

XD→N
k (θ) = qk(θ)

∑
i

I{
∑

j Gij = k}I{Xt
i = D} .

(7)

The quantity EA is positive definite and will tend to zero for a model that perfectly captures the
data.

5.2 Simulations

The distribution for EA is not analytically available, and so we use a parametric bootstrap
approach, simulating from the model once it has been fitted to observed data by maximum-
likelihood estimation (MLE), giving MLE parameter estimate θ̂.

We performed simulations as detailed in §2 above, extracting the proportion of individuals who
recover from depressive symptoms / gain depressive symptoms within a year, dependent on the
number of friends in different states they had at the initial time point. This sampling process
was repeated many times as for other bootstrap methods to obtain an accurate estimate of the
distributions of ED and EN .

5.3 Results

Fig. S3 shows observed and simulated residual error values ED and EN , together with associated
p values. Note that in this case, the simple residual error summary statistic does not have any
asymptotic properties that suggest it should be used in model selection in the way that AIC is,
therefore special attention should not be paid to any particular threshold of p value; rather, a
larger p value simply denotes a better fit. These results therefore support our broad conclusion
that N -transmits should be preferred to no transmission.
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Residual error function
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Residual error function
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Fig. S3: Cumulative distribution functions for residual errors, obtained via parametric bootstrapping,
versus the observed data residual error. (a) N -transmits recovery model residual error function cumu-
lative distribution (p = 0.94); (b) N -transmits deterioration model residual error function cumulative
distribution (p = 0.94); (c) no transmission recovery model residual error function cumulative distribu-
tion (p = 0.82); (d) no transmission deterioration model residual error function cumulative distribution
(p = 0.15).

6 Analysis of confounding

6.1 Setup

Our aim here is to state in mathematical language what is meant by transmission of mood,
how confounding is possible and not possible. We will do this using pairwise model notation,
and will write [A] for the number of nodes of state A, [A → B] for the number of individuals
in state A naming an individual in state B, at a given time point that we will normally omit;
formally

[A] =
∑
i

I{Xt
i = A} , [A→ B] =

∑
i,j

I{Xt
i = A}I{Gij = 1}I{Xt

j = B} . (8)

We are going to consider how to calculate relevant quantities for both a transmission model and
a model with homophily relating to some unobserved property ξ.
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6.2 Homophily model

Suppose we have a property (or vector of properties) that individuals have, for example age,
socio-economic status, or spatial location. We label these properties with ξ and write [ξ] for the
number of nodes that are of ξ etc.

Now consider a relatively general model in which the probability of changing state if in state A
and with property ξ is ρAξ . We can then write down equilibrium values for the expected number
of pairs under the stationary distribution π, which are

Eπ[A→ B] =
∑
ξ,ξ′

Eπ[ξ → ξ′]
ρAξ

ρAξ + ρAξ

ρBξ′

ρBξ′ + ρBξ′
. (9)

It is clear that by tuning the propensity of different property types to name each other as friends,
and the transition probabilities, arbitrary pair structures can be created. But for the transitions,
we have that at equilibrium

Eπ
[
XA→A
k

]
=
∑
ξ

Eπ[Aξ](1− ρAξ ) , Eπ
[
XA→A
k

]
=
∑
ξ

Eπ[Aξ]ρ
A
ξ . (10)

These do not depend on k. Overall, therefore, this model cannot be falsified from observations
of numbers of pairs [A → B], but can be falsified from observations of transitions stratified by
k, Y A→B

k .

6.3 Transmission model

In general, therefore

XN→D
k ∼ Bin

(
pk,

∑
i

I{Xt
i = N}I{(

∑
j GijI{Xt

j = N}) = k}
)

,

XD→N
k ∼ Bin

(
qk,

∑
i

I{Xt
i = D}I{(

∑
j GijI{Xt

j = N}) = k}
)

.
(11)

This means that given the freedom to choose pk, qk for a given network configuration, it is
possible to tune the expected values of these transitions to whatever value is required. The
probabilities assigned to different network configurations under the invariant distribution π do
not in general have an analytic closed form solution. In the event where pk and qk do not depend
on k, then equations of the form (10) will hold where every individual has the same property
ξ.

In the event where the population has size n and there are on average m friends per individual,
note that basic combinatorial considerations give that

m[N ] = [N → N ] + [N → D] , m[D] = [D → N ] + [D → D] , n = [N ] + [D] , (12)

meaning that there are only three independent parameters: [N ]; [N → D]; and [D → N ]. Now
suppose that pk is monotone decreasing with k and if qk is monotone increasing with k, this will
lead to fewer [D → N ] pairs than equations of the form (10) would suggest due to transmission
of N .
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6.4 Other models

It is, of course, possible to combine elements of the transmission and homophily models in various
ways. We take the philosophical position that anything more complex than the homophily
model above will constitute a mechanism for the phenomenon of social contagion rather than
an alternative to it.

7 Parameter Identifiability

We now turn to the question of how accurately model parameters can be inferred from data. To
do this, we performed simulations as in §2 above. Each set of simulated data was then fitted to
the same model that it had been generated from using MLE.

Fig. S4 shows histogram outlines of inferred N -transmits model parameter values. These N -
transmits simulated data fitted models were compared to the observed data N -transmits fitted
model values. A high level of identifiability was observed for each parameter.
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Fig. S4: Normalised frequency of inferred N -transmits model parameters from 104 simulated samples
for (a,b,c) transition from N to D and (d,e,f) transition from D to N versus chosen model values when
fitted to the observed data. (a,d) α; (b,e) β; (c,f) γ.
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