
Neural sequence generation using spatiotemporal patterns of in-
hibition: S1 Text. Derivation of recurrence relation and upper
bound for expected spike time variance.

In this text we derive the recurrence relation for the expected variance of spike times in pool p used in the
main manuscript, and show that this recurrence relation implies an asymptotic upper bound on expected
spike time variance that decreases as bmin increases. In order to derive the recursion, we first derive an
expression for the random variable tmp ; we use this expression to write a recursive formula for tmp ; we
use this formula to derive a recursive formula for mean spike time within pools; and finally, we use both
formulas to derive the recursive formula for expected variance.

Expression for spike time in terms of pool-specific variables

We assume for the sake of analysis that the first passage time of a QIF neuron depolarized past zero at
time T is drawn from a distribution that depends only on the rate of depolarization I ′(T ) (and the QIF
neuron parameters). We justify this assumption with simulation results in Fig. S1. Intuitively, this is the
case because these model neurons have no long time scales, and therefore quickly lose any memory of
initial voltage state and recent input history as long as they remain below threshold.

Given this assumption, we can let ρ (t− T ; I ′(T )) denote the distribution of any excitatory cell’s spike
time about T (the time its drive I(t) crosses zero), as a function of I ′(T ). From equations (5) and (6) we
find that the drive I(t) = geeE(t− tmp−1)− gieφp mod N + IE to principal cell m in pool p crosses zero at
the same rate for all m:

I ′(Tmp ) = geeE
′(Tmp − tmp−1)− gieφ′p mod N (t) ≈ ap + bp.

Therefore, the spike times of all neurons in pool p are drawn from identical distributions relative to the
time each one’s drive crosses zero: spike time tmp is drawn from the distribution ρ(t− Tmp ; ap + bp) for all
m.

We can express tmp as a sum of an expected value and a mean-zero random variable. Let z(I ′(T ))
denote the mean of ρ(t− T ; I ′(T )) and let σ(I ′(T )) denote its standard deviation, both functions of I ′(T ).
We define

zp :=z(ap + bp)

σp :=σ(ap + bp). (11)

Given ap and bp, the expected value of tmp is Tmp + zp, and we can express the random variable tmp as

tmp = Tmp + zp + ξmp (12)

where ξmp is a random variable drawn from the mean-zero distribution ρ(t−Tmp +zp; ap+ bp) with variance
σp.

Recursive formula for spike time

First we solve for a spike time tmp in terms of tmp−1 (the previous spike time on strand m). Substituting (5)
and (6) into (4), we have

0 =ap(T
m
p − tmp−1) + αp + bpT

m
p − βp + IE

Tmp =
1

ap + bp

(
βp − αp − IE + apt

m
p−1
)
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Substituting into (12),

tmp =
1

ap + bp

(
βp − αp − IE + apt

m
p−1
)
+ ξmp + zp (13)

This formula gives the spike time of cell m in pool p as a function of tmp−1 (the spike time of the
upstream cell, cell m in pool p− 1).

Recursive formula for mean spike time

As in (7), we define µp to be the mean spike time in pool p:

µp :=
1

Me

Me−1∑
m̃=0

tm̃p . (14)

Next we write a recursive relation for µp, the mean spike time in pool p, in terms off µp−1 (the mean
spike time in the upstream pool).

Substituting (13) into (14),

µp =
1

Me

Me−1∑
m̃=0

(
1

ap + bp

(
βp − αp − IE + apt

m̃
p−1
)
+ ξm̃p + zp

)

=
1

ap + bp

(
βp − αp − IE + ap

(
1

Me

Me−1∑
m̃=0

tm̃p−1

))
+ zp +

1

Me

Me−1∑
m̃=0

ξm̃p

Now we can substitute from (14) and write

µp =
1

ap + bp
(βp − αp − IE + apµp−1) + zp +

1

Me

Me−1∑
m̃=0

ξm̃p (15)

This is an expression for mean spike time in pool p in terms of the most recent mean spike time.

Recursive formula for expected variance

As in (8), we define vp to be the variance among the spike times in pool p:

vp :=
1

Me − 1

Me−1∑
m=0

(tmp − µp)2. (16)

Here we derive a recursive formula for the expected variance of spike times within a pool, E[vmp ], in terms
of the expected variance of the preceding pool, E[vmp−1].

First, we write an expression for tmp − µp, the difference between a single spike time in pool p and the
mean spike time in that pool. From (13) and (15), we have

tmp − µp =
1

ap + bp

(
βp − αp + IE + apt

m
p−1
)
+ ξmp + zp . . .

−

(
1

ap + bp
(βp − αp + IE + apµp−1) + zp +

1

Me

Me−1∑
m̃=0

ξm̃p

)
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The constants cancel, leaving

=
ap

ap + bp

(
tmp−1 − µp−1

)
+ ξmp −

1

Me

Me−1∑
m̃=0

ξm̃p

Combining the two ξmp terms,

=
ap

ap + bp

(
tmp−1 − µp−1

)
+
Me − 1

Me
ξmp −

1

Me

∑
m̃ 6=m

ξm̃p (17)

Next, we solve for the expected value of the variance in pool p in terms of the expected variance in pool
p− 1. From (16), we have

E[vp] =E

[
1

Me − 1

Me−1∑
m=0

(tmp − µp)2
]

Substituting for tmp − µp from (17),

E[vp] =E

 1

Me − 1

Me−1∑
m=0

 ap
ap + bp

(
tmp−1 − µp−1

)
+
Me − 1

Me
ξmp −

1

Me

∑
m̃ 6=m

ξm̃p

2


When this expression is squared through, cross terms of the form kξmp can be eliminated since ξmp has

zero mean, and cross terms of the form kξmp ξ
m̃
p for m̃ 6= m can be eliminated by the independence of these

variables. We are left with

E[vp] =E

 1

Me − 1

Me−1∑
m=0

( ap
ap + bp

(
tmp−1 − µp−1

))2

+

(
Me − 1

Me

)2 (
ξmp
)2

+
1

M2
e

∑
m̃ 6=m

(
ξm̃p
)2

=E

[
1

Me − 1

Me−1∑
m=0

(
ap

ap + bp

(
tmp−1 − µp−1

))2
]
+ E

[
1

Me − 1

Me−1∑
m=0

(
Me − 1

Me

)2 (
ξmp
)2]

. . .

+ E

 1

Me − 1

Me−1∑
m=0

1

M2
e

∑
m̃ 6=m

(
ξm̃p
)2

=

(
ap

ap + bp

)2

E

[
1

Me − 1

Me−1∑
m=0

(
tmp−1 − µp−1

)2]
+

1

Me − 1

(
Me − 1

Me

)2Me−1∑
m=0

E
[(
ξmp
)2]

. . .

+
1

M2
e (Me − 1)

Me−1∑
m=0

∑
m̃6=m

E
[(
ξm̃p
)2]
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Substituting from (16) and using E
[
(ξmp )2

]
= σ2

p,

E[vp] =
(

ap
ap + bp

)2

E [vp−1] +
1

Me − 1

(
Me − 1

Me

)2Me−1∑
m=0

σ2
p +

1

M2
e (Me − 1)

Me−1∑
m=0

∑
m̃6=m

σ2
p

=

(
ap

ap + bp

)2

E [vp−1] +
1

Me − 1

(
Me − 1

Me

)2

Meσ
2
p +

1

M2
e (Me − 1)

Me(Me − 1)σ2
p

=

(
ap

ap + bp

)2

E [vp−1] +
Me − 1

Me
σ2
p +

1

Me
σ2
p

=

(
ap

ap + bp

)2

E [vp−1] + σ2
p. (18)

Note that if bp = 0, this formula predicts that E [vp] will grow linearly at a rate of σ2
p = σ(ap)

2 per
pool.

Asymptotic bound on expected variance

Here we show that, when inhibitory feedback is nonzero, the recursive expression for E[vp] derived above

implies an asymptotic upper bound σ(amin+bmin)

1−
(

amax
amax+bmin

)2 on expected variance, where σ(amin+ bmin) decreases

with increasing bmin.
By assumption, there exist positive constants amax, amin and bmin such that bmin ≤ bp and amin ≤

ap ≤ amax, so ap
ap+bp

≤ amax

amax+bmin
. Substituting this inequality into (18),

E[vp] ≤
(

amax
amax + bmin

)2

E [vp−1] + σ2
p.

We recall from equation (11) that σp := σ(ap + bp), where σ(I
′(T )) is the standard deviation of the

distribution of first passage times of a QIF neuron as it is depolarized past zero at rate I ′(T ). In Figure
S1D, we show that this standard deviation decreases with increasing I ′(T ). We have ap+bp > amin+bmin,
so σ(amin + bmin) is an upper bound on σp for all pools p. Thus, we have

E[vp] <
(

amax
amax + bmin

)2

E [vp−1] + σ(amin + bmin)
2. (19)

We consider the related equality, E[vp] =
(

amax

amax+bmin

)2
E [vp−1] + σ(amin + bmin)

2. This recurrence

relation is of the form xp = Axp−1 + B, with A =
(

amax

amax+bmin

)2
and B = σ(amin + bmin)

2; as such, it

describes the evolution of a linear discrete-time dynamical system. Solving the equality for xp = xp−1,
we find that this system has a fixed point at xp = B

1−A . Such a fixed point is asymptotically stable if

A ∈ (−1, 1), and we have A =
(

amax

amax+bmin

)2
∈ (−1, 1), so any solution to the equality approaches it

asymptotically. Since A > 0, any solution to inequality (19) must stay strictly below the solution to the
recurrence equation that is initialized from the same initial conditions. Therefore,

lim
p→∞

E[vp] <
B

1−A
=

σ(amin + bmin)
2

1−
(

amax

amax+bmin

)2 ,
where, as noted above, σ(amin + bmin) decreases as bmin increases.
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