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Supplementary Figure 1 
 

 
 
Comparison of rich-club coefficients between young and old participants.  
 
The two panels show rich-club coefficients seen in an extended degree range. Qualitatively, in TD 
group, the coefficients seen in the older participants were larger than those seen in the younger 
participants  
 
The estimation observed at >50 degrees were noisy because some participants’ brain networks did not 
have enough number of ROIs to calculate rich-club coefficients at some high degrees. The panels did 
not present rich-club coefficients at some large degrees (k > 69 in TD, k > 74 in ASD), because it was 
impossible to estimate standard deviations at that range. The main figure (Figure 1b) focused on the 
reliable and meaningful part of this estimation (k < 50). *, PFDR < 0.05 in k = 43, 47, 48, 65. 
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Supplementary Figure 2 
 

 
 
Relationship between age and rich-club coefficients ranging from k = 35 to k = 50. 
 
The age-related changes in average rich-club coefficients seen in Figure 2 were also observed even 
when the coefficients were averaged across degrees ranging from 35 to 50. This degree range was 
determined based on a previous study1: first, Figure 1b shows that stable increases in the coefficients 
began at around k = 35 in all the TD/ASD and younger/older groups; in addition, Supplementary Figure 
1 indicates that, when the degree was more than 50, the estimation of the coefficients appeared to be 
relatively noisy; therefore, according to the previous study, this analysis focused on the rich-club 
coefficients from k = 35 to k = 50.   



Page 3 of 8	

 
Supplementary Figure 3 
 

 
 
Results based on binary brain networks. 
 
The analyses using binary unweighted brain networks showed qualitatively the same results as those 
seen in the analyses using weighted networks. (a) In TD group, the older group showed larger rich-
club coefficients than the younger group. *, PFDR < 0.05 in k = 47–50, 53–59. (b) The rich-club 
coefficients averaged across top 30 degrees were significantly correlated with age only in TD group. 
(c) The similar age-related increase was observed even when the coefficients were averaged across 
degrees from k = 20 to k = 50. The range of degree was determined in the same manner described in 
Supplementary Figure 2. (d) (e) Global efficiency and synchronisation cost also showed age-related 
changes only in TD groups.   
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Supplementary Figure 4 
 

 
 

Robustness against exclusion of thin connections.  
 
The main part of the current observations could be reproduced even when we excluded thin 
connections that had less than five fibres. *, P ≤ 0.05. 
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Supplementary Figure 5 
 

 
 
Group-averaged rich-club coefficients. 
 
The panels show rich-club coefficients that were calculated from group-averaged weighted brain 
networks in the same manner as one described in a previous study2 (Supplementary Methods). The 
older group shows larger values than the younger group only in TD group, which is comparable to the 
observations presented in Figure 1b.  
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Supplementary Figure 6 
 

 
 
Results based on cortical networks. 
 
To evaluate influence of the subcortical regions on the current findings, we estimated rich-club 
coefficients using brain networks consisting of 244 cortical ROIs. (a) As a result, we observed the 
similar pattern in the comparison of the coefficients between TD/ASD and younger/older groups. (b) 
An age-related change was also seen in TD group, but the difference in the age-related changes 
between TD and ASD groups were slightly milder than that observed in the original whole-brain 
networks consisting of 264 ROIs including the subcortical areas such as the thalamus. *, PFDR < 0.05 
in k = 29–34. 
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Supplementary Results 
 
Effects of  and  on . 

 
Age-related neuroanatomical changes could affect the detectability of fibres in DTI. In fact, in the 
current data, age of TD individuals was significantly correlated with both the average degree, , 

and weight,  (age v : r = 0.35, P = 0.035; age v : r = 0.43, P = 0.0091). Therefor, we 

attempted to reduce this confounding effect by dividing  by  or . Such correction 

was supposed to normalise the difference in  or  between TD and ASD groups, though 
originally there was no significant difference. 
 
Supplementary Methods 
 
Analyses based on binary brain networks. 
 
A binary network matrix, A, was built for each participant by defining a connection, Aij, between 
regions i and j as follows: Aij = 1 , when Wij > 0  ; otherwise, , where Wij represents the number 

of the fibres detected between region i and j. Using these binary matrices, we calculated normalised 
rich-club coefficients in the same manner as in previous studies3-5: we first estimated an un-normalised 
rich-club coefficient, , for each degree as follows: 

, 

where E>k indicates the number of connections among N>k regions that have more than k degrees. 
Before normalisation, we designed 5000 different random networks with the same degree distribution 
as the original one with the method adopted in previous studies2,6. We then estimated rich-club 
coefficients for the 5000 random networks and estimated the averaged coefficient, Φrandom (k) . The 
normalised rich-club coefficient, , was then calculated as 

. 

We used these unweighted rich-club coefficients to investigate relationship between age and rich-club 
property.  
 
Global efficiency for the binary networks was estimated in essentially the same manner as one adopted 
for weighted connectivity matrices: we first estimated the shortest path length among all region pairs7,8, 
and calculated the global efficiency as  

 , 

where N represents the number of the regions and  denotes the shortest path length between 

region i and j. 
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Synchronisation cost for a binary matrix is also defined in essentially the same manner as that for a 
weighted matrix. A complex network consisting of Kuramoto-type phase oscillators with different 
natural frequencies was first defined by the following equation: 

, 

where  and  indicate the phase and natural frequency of the oscillator i. The coupling strength, 

, was set as a constant value, 0.3 (ref9). The synchronisation cost, , for an edge between nodes i 

and j was defined as , where  and  indicate the phases of the 

synchronised oscillators i and j, respectively. We finally calculated the average synchronisation costs 
across edges for each individual. 
 
Estimation of group-averaged rich-club coefficients 
 
We estimate group-average rich-club coefficients in the same manner as in a previous study2. First, we 
built a binary connectivity matrix, A. Second, a group-average connectivity matrix, , was built for 
each of the four groups (i.e., younger/older × TD/ASD groups) by selecting region pairs that were 
connected in at least 75% of the participants in each group. Third, group-averaged weights were 
calculated only for the connected pairs of regions (i.e., ). If two different regions were not 

averagely connected (i.e., ), the corresponding group-averaged weight was defined as 0. For 

each of these four group-averaged weighted connectivity matrices, we finally calculated rich-club 
coefficients in the same manner as described in the main text (see “Estimation of rich-club 
coefficients” in Methods section). 
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