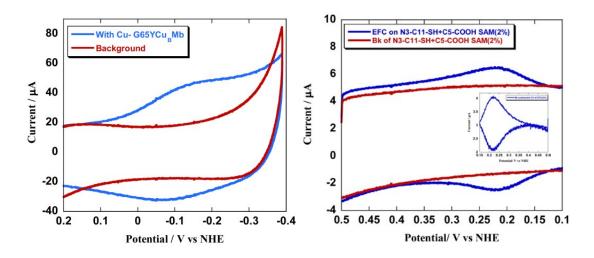
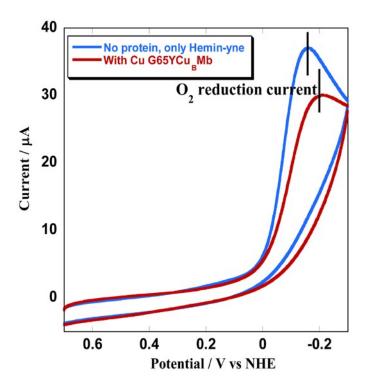

Supplementary Information

SERRS of electrodes bearing Hemin-yne and myoglobin reconstituted with Hemin-yne

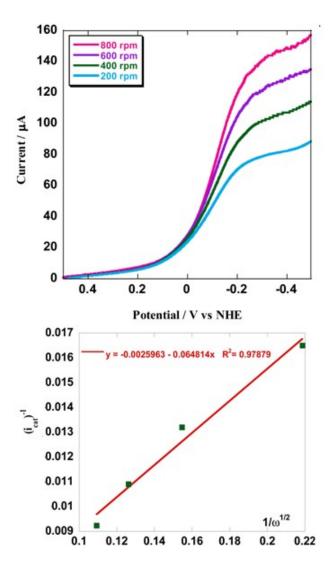
Supplementary Figure 1. SERRS spectra of Hemin-yne and myoglobin reconstituted with Hemin-yne in air saturated 100 mM phosphate buffer (pH 7) solution.


X-ray Photoelectron Spectroscopic data

Supplementary Figure 2. High-resolution XP spectra for G65YCu_BMb (with Cu) mutant immobilized on the SAM covered Au Surface using click reaction. (A) Fe $2p_{3/2}$

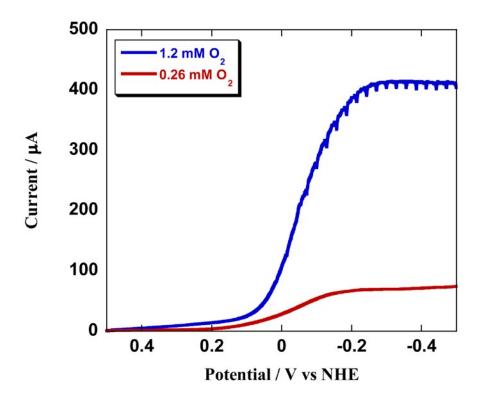

and $2p_{1/2}$ (B) Fe $3p_{3/2}$ (C) Cu $2p_{3/2}$ and $2p_{1/2}$ (D) S $2p_{3/2}$ and $2p_{1/2}$ (E) N $1s_{1/2}$ for triazole linkage (F) C $1s_{1/2}$ (G) O $1s_{1/2}$.

Background subtraction from the CV of the electrode functionalized with $G65YCu_{B}Mb$ protein

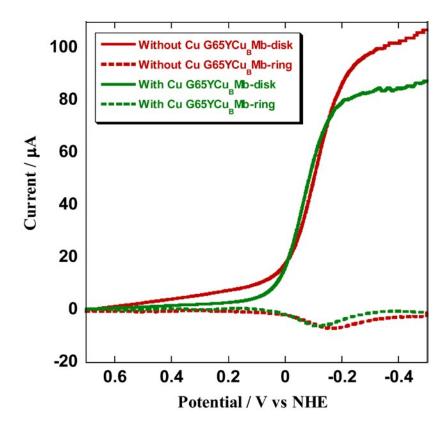


Supplementary Figure 3. (**left**) Overlay of the CV of the bioelectrode with the background current obtained before protein attachment (**right**) overlay of the background current with ethynylferrocene attached to the surface having same density of azide instead of the heimin-1Fe.

O_2 Reduction by the Hemin-yne modified surface before and after $G65YCu_BMb$ (with Cu) protein binding



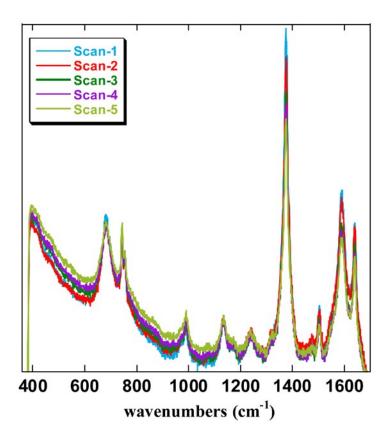
Supplementary Figure 4: Cyclic voltammogram for the O₂ reduction by the Hemin-yne modified surface before (blue) and after G65YCu_BMb (with Cu) protein (red) binding, in 100 mM pH 7 phosphate buffer (air saturated) using Ag/AgCl electrode as reference and Pt as counter electrode.



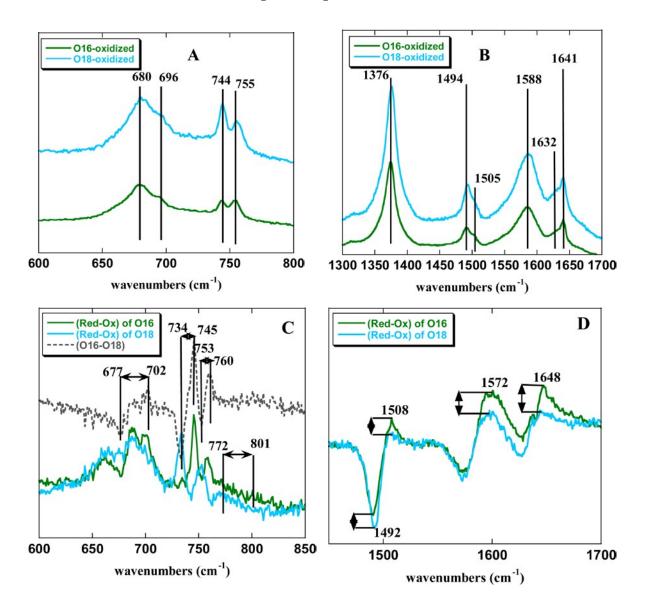
Supplementary Figure 5: Linear sweep voltammogram of G65YCu_BMb (without Cu) modified electrode in air saturated pH7 100 mM phosphate buffer solution at 100 mV/s scan rate and using Ag/AgCl electrode as reference and Pt as counter electrode are plotted at different rotation speed (top). Plot of $(i_{cat})^{-1}$ at multiple rotation rates with the inverse square root of the angular rotation rate $(\omega^{-1/2})$ is also shown (bottom).

LSV for electrocatalytic ORR at different concentration of O₂

Supplementary Figure 6: LSV for electrocatalytic ORR at different concentration of O_2 at 300 rpm rotation and at 100 mV/s scan rate.

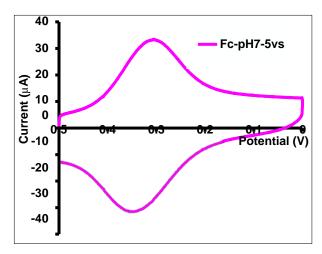

Supplementary Figure 7: Rotating ring disk electrode (RRDE) data of without Cu, G65YCu_BMb (red) and with Cu, G65YCu_BMb (green) at 10 mV/s and at 300 rpm rotation speed in air saturated pH 7 100 mM phosphate buffer using Ag/AgCl electrode as reference and Pt as counter electrode. The Pt current of the data for without Cu, G65YCu_BMb (red) and with Cu, G65YCu_BMb (green) were scaled by a factor of 10 and 15, respectively, for clear presentation.

 $\label{eq:control_problem} Degradation \ of \ With \ Cu \ G65YCu_BMb \ modified \ surface \ on \ PROS \ production \ (both \ in \ presence \ and \ in \ absence \ of \ catalase)$

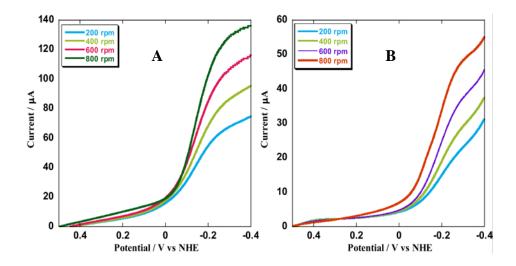

Supplementary Figure 8: Charge vs time plot for the degradation of with Cu $G65YCu_BMb$ modified surface with PROS production (in absence and in presence of 50 μ M catalase in pH 7 phosphate buffer), at 200 rpm rotation and at -0.3 V vs NHE.

Stability of the $G65YCu_BMb$ (with Cu) protein modified surface during electrolysis at -0.4 V vs NHE

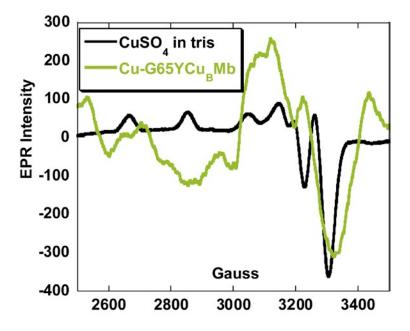
Supplementary Figure 9: SERRS-RDE spectra of G65YCu_BMb (with Cu) protein modified surface, collected over 500 seconds during a bulk electrolysis experiment at -0.3 V vs NHE during which the electrode is under continuous rotation (300 rpm). Five scans are performed for 100 seconds each (one LSV is typically 20 seconds), in 100 mM pH 7 phosphate buffer saturated with O¹⁸ isotope, using Ag/AgCl refrence electrode and Pt counter electrode.


SERRS-RDE data obtained in $^{18}\mathrm{O}_2$ and $^{16}\mathrm{O}_2$ buffer.

Supplementary Figure 10: SERRS-RDE on G65YCu_BMb with Cu, immobilized bioelectrode in the presence of O_2^{16} and O_2^{18} saturated pH 7 phosphate buffer. (A) Oxidized spectra in O_2^{16} and O_2^{18} saturated pH 7 phosphate buffer at low range of wavenumbers (B) Oxidized spectra in O_2^{16} and O_2^{18} saturated pH 7 phosphate buffer at high range of wavenumbers (C) Difference spectra of reduced and oxidized state in O_2^{16} and O_2^{18} saturated pH 7 phosphate buffer at low range of wavenumbers, showing the

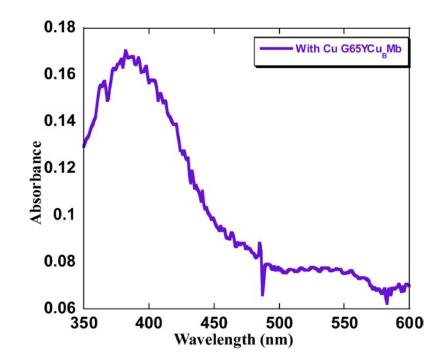

isotopic shift (D) Difference spectra of reduced and oxidized state in O_2^{16} and O_2^{18} saturated pH 7 phosphate buffer at high range of wavenumbers, showing the increase in intensity of the peaks from O_2^{18} to O_2^{16} .

CV of ethynylferrocene attached to the surface modified with the SAM of 1-azidoundecan-11-thiol and 6-mercaptohexanoic acid

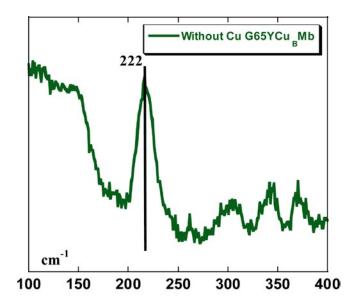


Supplementary Figure 11. CV of ethynylferrocene attached to the surface modified with the SAM of 1-azidoundecan-11-thiol and 6-mercaptohexanoic acid, at 5 V/s scan rate and using Ag/AgCl as the reference electrode and Pt as the counter electrode.

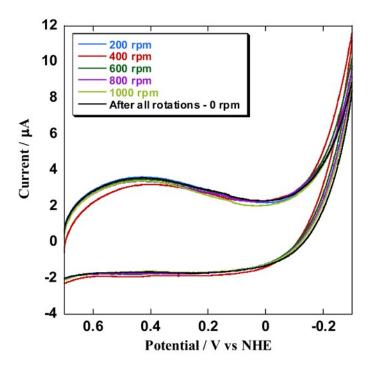
Decay of Hemin-yne, Hemin-yne bound Cu_BMb (no Y65)



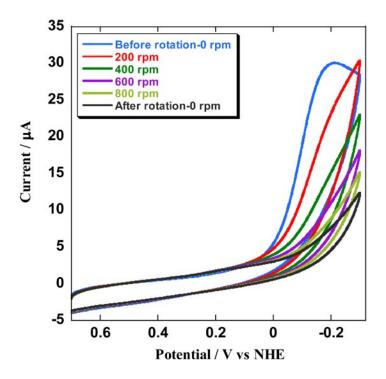
Supplementary Figure 12: Decay of O₂ reduction current at different angular rotation rate for (A) Hemin-yne (B) Hemin-yne bound Mb. Data clearly indicates the rapid decay of these catalysts.


Supplementary Figure 13: EPR spectra of $G65YCu_BMb$ (green) with Cu compared with $CuSO_4$ (black) in 10 mM pH 7 phosphate buffer.

UV-vis absorption spectra of G65YCu_BMb with Cu on the Au surface


Supplementary Figure 14: Uv-vis absorption spectra of G65YCu_BMb with Cu in 10mM pH 7 phosphate buffer.

Fe-His stretch


Supplementary Figure 15: Resonance Raman spectra of the homogenous solution of G65YCu_BMb (green) with Cu indicating the Fe-His stretching frequency at 220 cm⁻¹.

Stability of the mixed SAM of 1-azidoundecan-11-thiol and 6-mercaptohexanoic acid after rotations

Supplementary Figure 16: Cyclic voltammogram of the background current of mixed SAM of 1-azidoundecan-11-thiol and 6-mercaptohexanoic acid, in 100 mM pH 7 phosphate buffer at after rotating the electrode at different rotation rates. (Ag/AgCl reference and Pt counter electrode)

Stability of the G65YCu_BMb (with Cu) protein modified surface after rotations

Supplementary Figure 17: Cyclic voltammogram of the G65YCu_BMb (with Cu) protein modified surface, in 100 mM pH 7 phosphate buffer at different rotation rate using Ag/AgCl electrode as reference and Pt as counter electrode.

Supplementary Table 1. XPS data of $G65YCu_BMb$ (with Cu) modified Au electrode

		Binding Energies (eV)
Fe	2p _{3/2}	709.7
	2p _{1/2}	722.2
	3p _{3/2}	56.8
Cu	2p _{3/2}	931.1
	2p _{1/2}	952.2
S^1	2p _{3/2}	161.6
	2p _{1/2}	163.7
N	1s _{1/2}	397.9, 399.5
С	1s _{1/2}	284.7, 287.8
O¹	1s _{1/2}	532.3

Supplementary Reference

1. Yuan, S. J.; Pehkonen, S. O., Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater. *Corros. Sci.* **49**, (3), 1276-1304, (2007).