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Supplementary Figure 1. Experimental setup for reflection measurements.
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Supplementary Figure 2. Cavity decay rate κ as a function of cryostat base tempera-

ture Tb. The line width of the cavity resonance starts to increase above 0.34 K.
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Supplementary Figure 3. Calibration of the initial thermal occupancy nim by varying

the refrigerator temperature Tb. The mode temperature of the membrane is thermalised at

base temperature to T i
m ≈ 180 mK, corresponding to nim ≈ 3.06× 104. The error bars indicate the

uncertainty of the data points, combining the fluctuations due to the temperature and the signal

level.
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Supplementary Figure 4. COMSOL model showing a 3D cavity embedding an an-

tenna.
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Supplementary Note 1: Experimental setup

The sample is cooled down in a cryogen-free dilution refrigerator to a base temperature of

12 to 13 mK. Input microwave signals are attenuated at each thermal stage as illustrated

by Supplementary Figure 1. At base temperature, the signal is injected into the cavity

via the coupling port of a 20 dB directional coupler. The reflected power collected at the

output port is amplified by a cold amplifier at the 3 K plate and subsequent amplifiers

at room temperature and then detected by a network analyser or a spectrum analyser.

Circulators are placed between the sample and the cold amplifier to isolate the sample from

noise generated by the amplifier. A cancelling tone is applied using a directional coupler,

a phase shifter and a continuous attenuator in order to reduce the amplitude of the strong

drive tone before sending it to the room temperature amplifier. For the optomechanically-

induced transparency (OMIT) experiment, a network analyser is used to generate the weak

probe tone ωp and a separate phase locked signal generator provides the strong drive tone ωd.

Supplementary Note 2: Cavity characterisation

The cavity response |S11| in Fig. 2a in the main text is fitted with the following equation,

taking into consideration the finite isolation of the directional coupler [1]:

|S11(ω)| =
∣∣∣∣αeiφ + (1− α)(1− κe

i(ω − ω0) + κ
2

)

∣∣∣∣ , (1)

where α is the isolation of the directional coupler.

Due to the low superconducting transition temperature of aluminium Tc ∼ 1.2 K, the

internal cavity quality factor is significantly reduced as the cryostat temperature Tb is raised

above ∼0.34 K, and the line width κ is broadened, as shown in Supplementary Figure 2.

This effect needs to be taken into account in the thermal calibration. As a function of

temperature, we find that κe remains constant.

Supplementary Note 3: Calibration of the mode temperature

A thermal calibration is carried out to determine the initial (i.e. without cooling) phonon

occupancy ni
m = 1

exp h̄ωm
kBT i

m
−1 of the mechanical resonator, kB being the Boltzmann constant

and T i
m the initial mode temperature. We send in a carrier signal at ω0 to avoid any back-
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action effects and measure the total power of its mechanical sideband at different cryostat

temperature Tb. The total power generated by the thermal motion of the membrane is

then used to extract the mechanical mode temperature T i
m. We use a resolution bandwidth

(RBW) of 1 Hz. In the limit of RBW� γm, the total thermal power can be directly read

out from the peak height. For Tb > 0.34 K, ω0 and κ changes significantly due to the low

critical temperature of Al, which has to be taken into account. We plot the converted ni
m

as a function of refrigerator temperature Tb in Supplementary Figure 3. From the fitting

line that passes the original point, at the base temperature the membrane is thermalised to

T i
m ≈ 180 mK and ni

m ≈ 3.06× 104. The mode temperature is significantly higher than the

base temperature of the refrigerator, which is probably an inevitable challenge one is faced

with when working with a low-frequency (< 1 MHz) mechanical resonator.

Supplementary Note 4: Power calibration

The photon number in the cavity corresponding to the input power at the cavity Pin at

frequency ω is calculated with

N =
Pin

h̄ω
· κe

(κ
2
)2 + (ω − ω0)2

. (2)

While driving the cavity on resonance, the sideband power due to the thermal motion is

expressed as

Pside =Pin

(
g0
xzpf

)2

· kBT
mω2

m

·
(κe

2
)2

(κ
2
)2 + (ω − ωr,b)2

1

(κ
2
)2 + (ω − ω0)2

=Pin · g20 · 2nm ·
(κe

2
)2

(κ
2
)2 + (ω − ωr,b)2

1

(κ
2
)2 + (ω − ω0)2

,

(3)

where g0 is again the single-photon coupling rate, kB the Boltzmann constant and nm the

mechanical occupancy. The sideband frequency of interest is either ωr or ωb.

The loss of the input line L and the gain of the output line G are calibrated as the

following: while driving the cavity on resonance (ω = ω0) with power P ′in from the signal gen-

erator, the thermomechanical power measured by the spectrum analyser at the mechanical

sidebands can be written as:

Pside =P ′in · g20 · 2nm

(κe
κ

)2 1

(κ
2
)2 + ω2

m

· L · G

=P ′in · g20 · β.
(4)
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The combined value of L · G is determined by the network analyser. Thermal occupation

can be measured by sweeping the bath temperature as described in the previous section. All

the parameters being known in β, single-photon coupling strength g0 can be extracted. This

is equivalent to the single-photon coupling strength calibration the frequency modulation

(FM) technique described in [8], where the FM peak of the carrier wave provides a side-by-

side reference of L ·G. Using this approach, we measure the single-photon coupling strength

to be g0 = 0.22 Hz. This further allows us to calibrate the corresponding photon number

N by using the experimentally obtained photon-enhanced g = g0
√
N (from cooperativity

measurements). Subsequently, by rewriting Supplementary Equation 2 as

N =
P ′in
h̄ω
· κe

(κ
2
)2 + (ω − ω0)2

· L, (5)

we calibrate the total input attenuation L = 70 dB and correspondingly the output gain

G = 73.5 dB. The added noise of the output chain is calibrated to be nadd = 12 correspond-

ing a noise temperature of approximately 2.6 K.

Supplementary Note 5: COMSOL RF simulations to estimate g0

To estimate the single-photon coupling rate g0 of the 3D-cavity-membrane system, we model

the problem with a “variable capacitor in cavity” structure and numerically calculate the

cavity frequency ω0 with COMSOL. The following relation is used to derive g0:

g0 =
δω0

δC1

· δC2 (6)

where δC1 is the change in capacitance by varying the gap between the two antenna rods,

δω0 the subsequent frequency shift and δC2 the change in capacitance due to zero-point

fluctuation xzpf of the membrane. δC2 can be expressed as δC2 = ε0A2

d2 xzpf, where ε0 is the

free space permittivity, A2 the area of the membrane and d the gap between the membrane

and the antenna.

The geometry of the COMSOL model is shown in Supplementary Figure 4. The

dimension of the 3D cavity is 28 mm×28 mm×8 mm. There is a 0.6 mm thick sapphire

substrate at the centre of the cavity. The antenna is simplified to two Al rods with a cross

section of 0.25 mm×0.25 mm, the length of the antenna being 4 mm and their gap is varied

between 20 and 30 µm, changing the parallel-plate capacitance between them. Although

this geometry is different from the actual geometry of the antenna, it results in comparable
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frequency pull of ω0, indicating that the capacitance participation ratio in the equivalent

lumped-element circuit is similar. For a membrane of 1 mm×1 mm, a gap of d = 3 µm

and xzpf = 0.6 fm the resulting coupling strength is g0 ≈ 0.36 Hz. Since g0 is inversely

proportional to the square of d, if d can be reduced to 30 nm, g0 can be increased to 3.6 kHz.

Supplementary Note 6: Quantum noise of optomechanical cooling

The linearised Hamiltonian of the optomechanical system in a frame rotating at the drive

tone frequency ωd can be written as [2–6]:

Ĥ = −h̄∆â†â+ h̄ωmb̂
†b̂− h̄g(â† + â)(b̂† + b̂), (7)

where ∆ = ωd − ω0, â
†(â) the creation (annihilation) operator for the cavity field variation

and b̂†(b̂) the creation (annihilation) operator for the mechanical mode. The optomechanical

coupling g = g0
√
N is enhanced by the number of photons N , g0 being the single-photon

coupling rate.

We obtain the Heisenberg-Langevin equations

˙̂a(t) =
(
i∆− κ

2

)
â(t) + ig(b̂(t) + b̂†(t)) +

∑
j=e,0

√
κj ξ̂j(t)

˙̂
b(t) =

(
−iωm −

γm
2

)
b̂(t) + ig(â(t) + â†(t)) +

√
γmξ̂m(t)

and their Hermitian conjugates

˙̂a†(t) =
(
−i∆− κ

2

)
â†(t)− ig(b̂(t) + b̂†(t)) +

∑
j=e,0

√
κj ξ̂j(t)

˙̂
b†(t) =

(
iωm −

γm
2

)
b̂†(t)− ig(â(t) + â†(t)) +

√
γmξ̂m(t),

where κ and γm are the decay rates of the cavity and the mechanical resonator respec-

tively. The noise operators satisfy the following relationships: 〈ξ̂†m(t)ξ̂m(0)〉 = ni
mδ(t),

〈ξ̂m(t)ξ̂†m(0)〉 = (ni
m + 1)δ(t); 〈ξ̂†e(t)ξ̂e(0)〉 = neδ(t), 〈ξ̂e(t)ξ̂†e(0)〉 = (ne + 1)δ(t); 〈ξ̂†0(t)ξ̂0(0)〉 =

n0δ(t), 〈ξ̂0(t)ξ̂†0(0)〉 = (n0 + 1)δ(t); neκe + n0κ0 = ncκ.
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We will rewrite this in matrix form, setting

v(t) :=


â(t)

â†(t)

b̂(t)

b̂†(t)

 w(t) :=


∑

j=e,0

√
κj ξ̂j(t)∑

j=e,0

√
κj ξ̂j(t)

√
γmξ̂m(t)
√
γmξ̂m(t)



and

A :=


i∆− κ

2
0 ig ig

0 −i∆− κ
2

−ig −ig

ig ig −iωm − γm

2
0

−ig −ig 0 iωm − γm

2



thus we get

v′(t) = Av(t) + w(t).

Using Fourier transforms F(f(t)) = f(ω) ≡
∫∞
−∞f(t)eiωt dt we have

−iωv(ω) = Av(ω) + w(ω)

which has the solution

v(ω) = (−iωI − A)−1w(ω) = B−1w(ω),

B =


−iω − i∆ + κ

2
0 −ig −ig

0 −iω + i∆ + κ
2

ig ig

−ig −ig −iω + iωm + γm

2
0

ig ig 0 −iω − iωm + γm

2



≡


1/χc 0 −ig −ig

0 1/χ̄c ig ig

−ig −ig 1/χm 0

ig ig 0 1/χ̄m

 .
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For cooling we use ∆ = −Ωm and let δ = ω − Ωm. Applying the rotating wave

approximation, omitting contribution from χ̄c, χ̄m, we get

â(ω) =
χc
∑√

κiξ̂i + igχmχc
√
γmξ̂m

1 + g2χcχm

(8)

b̂(ω) =
χm
√
γmξ̂m + igχmχc

∑√
κj ξ̂j

1 + g2χcχm

. (9)

From the input-output theory the output field can be expressed as

âout =ξ̂e −
√
κeâ

=

(
1− χcκe

1 + g2χcχm

)
ξ̂e −

χc
√
κeκ0

1 + g2χcχm

ξ̂0 −
i
√
κeγmgχcχm

1 + g2χcχm

ξ̂m.
(10)

Since a cancelling tone is added, the detected field is modified as

âout =ξ̂e −
√
κeâ− ξ̂e

=
χcκe

1 + g2χcχm

ξ̂e −
χc
√
κeκ0

1 + g2χcχm

ξ̂0 −
i
√
κeγmgχcχm

1 + g2χcχm

ξ̂m

=
∑

k=e,0,m

fk(ω)ξ̂k(ω).

(11)

The spectrum analyser detects the symmetric power spectral density (PSD) [7]

S(ω)

h̄ω
=

1

2

∫ ∞
−∞

eiωt〈â†out(0)âout(t) + âout(t)â
†
out(0)〉dt.

=
1

2π

1

2
〈â†out(−ω)âout(ω) + âout(ω)â†out(−ω)〉.

(12)

Strictly speaking this is for the lab frame, however in this case only the detunings enter the

equations, therefore we could directly substitute in Supplementary Equation 8 and 11 and

get
S(ω)

h̄ω
=

∑
k=e,0,m

|fk(ω)|2
(
ni
k +

1

2

)
, (13)

nie,0 being equivalent to ne,0. Including the added noise from the amplification chain, we get

S(ω)

h̄ω
=

g2κeγm

|g2 +
(
κ
2
− iδ

) (
γm

2
− iδ

)
|2

(
ni
m +

1

2

)
+

|γm

2
− iδ|2κeκ

|g2 +
(
κ
2
− iδ

) (
γm

2
− iδ

)
|2

(
nc +

1

2

)
+nadd.

(14)

Note that the noise operators in the frequency domain satisfy the following relations:

〈ξ̂†k(ω)ξ̂k(ω
′)〉 = 2πni

kδ(ω + ω′), 〈ξ̂k(ω)ξ̂†k(ω
′)〉 = 2π(ni

k + 1)δ(ω + ω′).
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The final occupation can be found via equipartition [4, 5]:

1 + 2nm =
〈x̂2〉
x2zpf

=

∫ ∞
−∞

dω

2π

Sxx(ω)

x2zpf

=
1

x2zpf

∫ ∞
−∞

dω

2π

∫ ∞
−∞

1

2
〈x̂(t)x̂(0) + x̂(0)x̂(t)〉eiωtdt,

(15)

where x̂(t) = xzpf(b̂(t) + b̂†(t)), xzpf being the zero-point fluctuation. Substituting in Supple-

mentary Equation 9, using formulae of contour integrals and considering κ2 � 4g2, κγm, γm,

we find

nm ≈
κγm

4g2 + κγm
ni
m +

4g2

4g2 + κγm
nc =

1

C + 1
ni
m +

C

C + 1
nc. (16)

Supplementary Note 7: Noise from the signal generator

For the measurement shown in Fig. 4 of the main text, we use a Phase Matrix QuickSyn

FSW-0020 microwave signal generator. We measure a sideband noise Sφ of −130 dBc/Hz

at 120 kHz offset for a 5.1 GHz carrier signal. Cavity noise occupancy nc contributed by

the signal’s own noise can be estimated by

nc =
PinSφ · κe

h̄ω

κe
(κ/2)2

. (17)

For a critically coupled cavity, we have

nc =
Pin × 10−13/Hz

h̄ω
. (18)

The green line in Fig. 4c in the main text is plotted with the above equation.

Measurements were also performed using an a Agilent PSG-UNY low phase noise

option microwave signal generator which was available to us for a short time. Although

the phase noise of the PSG-UNY at an offset of 120 kHz is specified to be -137 dBc/Hz for

5 GHz carrier signals, the total sideband noise (amplitude and phase) was observed to be

-132 dBc/Hz. Although we did not have time to perform a full thermal calibration of the

setup with the PSG-UNY, we observed that the cavity noise nc was about 2 dB lower with

the PSG generator with no evidence of additional mode heating, implying that the final

occupation with the PSG generator would be 4.3 phonons.
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