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Fig. 1: Mixing rate of eQTeL with and without block sampler. ( Note: reg-
ulatory and interaction priors were removed for this exposition). The block 
sampler leverages information of Linkage disequilibrium (LD) blocks to choose 
sparse set of SNPs within each LD block. In the current example, there are two 
(identical) SNPs within each LD block. The sampler without block sampler are 
more often stuck at previously selected SNPs in consecutive MCMC iterations 
compared to the block sampler. This problem will exponentially increase with 
growing number of SNPs in LD block. On the other hand, block sampler chooses 
subset of SNPs with a LD from their full posterior distribution in each iteration 
independently using a MH sampler. Relatively higher number of combinations 
of SNPs will be explored by block sampler. The block sampler chooses compar-
atively better subset of SNPs since it explores relatively larger fraction of the 
model space.

Supplementary Figures
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Fig. 2: Feature-analysis: Significant features (p− value < 10−6) are sorted by
their enrichment in eeSNPs relative to random SNPs (Note: features are not
independent). Lists the epigenetic and
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Fig. 3: Validation of eeSNPs in GTEx: Comparative performance of SNPs de-
tected by eQTeL, LASSO and eqtnminer in terms of explained variance. Num-
ber of SNPs were controlled for each method (as in Fig 2). SNPs from eQTeL
were selected using posterior probability > 0.5. The figure shows (5 fold) cross-
validated explained variance and correlation between predicted expression using
alleles of identified SNPs for each methods.
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Fig. 4: Comparative performance of eQTeL in terms of explained variance in
simulated data: Number of SNPs were controlled for each method (as in Fig 2).
SNPs from eQTeL were selected using posterior probability > 0.5. SNPs from
eQTeL were identified with posterior probability > 0.5. The figure shows (10
fold) cross-validated explained variance for each method.
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Fig. 5: Comparative performance of eQTeL in terms of expression predictability
in simulated data: Number of SNPs were controlled for each method (as in Fig
2). SNPs from eQTeL were selected using posterior probability > 0.5. The
figure shows (10 fold) cross-validated correlation between predicted expression
using alleles of identified SNPs for each method.
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Fig. 6: Comparison of recall-rate of different methods (controlled for overall
effective sparsity). eQTeL-high is eeSNPs with high regulatory potential (above
75 quantile). eQTeL-low is eeSNPs with low regulatory potential in lower 25%
quantile.
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(a) top 1 per gene
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(b) top 2 SNPs per gene
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(d) top 5 SNPs per gene

Fig. 7: Comparative performance of eQTeL as number of SNP per genes are
increased in imputed data.
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Fig. 8: Lirnet enrichment of DGF footprint: This analysis is based on 162 SNPs
identified by eQTeL and Lirnet. We analyzed footprint in 42 cell lines from
Neph et. al. overlapping the SNP within 25 bps the SNP loci by using bedtools
for each of the method. The heart-related-tissues are highlighted in red in the
figure. The left-most bar represents pooled data from all heart-related cell types.
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Fig. 9: Eqtnminer subset selection. The eqtnminer with 8 dimensional features
(from 95 dimensional features), selected based on feature importance estimated
by eQTeL. Non-redundant features were chosen. The performance of eqtnminer
improves substantially compared to 95 dimensional eqtnminer.
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Fig. 10: DNAse hypersensitivity at eeSNPs shows greater allele specificity in 
HCM. X axis: rank of DHS read counts, Y axis: absolute log-ratio of read counts 
mapping to the two alleles at a SNP. SNPs from different methods are selected 
similar to Fig 5. The median white lines represent LOESS (local regression) 
for each method. Confidence interval for each median line is estimated using 
bootstrapping and are represented either by thin lines representing LOESS of 
each bootstrap, or by colored shades representing confidence intervals in terms 
of standard deviation of bootstraps. Note the allele-specificity at SNPs detected 
by eQTeL and eqtnminer remains same even if we control for number of SNPs 
per gene.
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Fig. 11: Relative allele specificity (in terms of DHS reads) by SNPs identified 
by different methods: X axis: rank of DHS read counts, Y axis: absolute log-
ratio of read counts mapping to the two alleles at a SNP. SNPs from different 
methods are selected similar to fig 5. The median white lines represent LOESS 
(local regression) for each method. Confidence interval for each median line is 
estimated using bootstrapping and they are shown in the figures using either 
of following two ways: by thin lines representing LOESS of each bootstrap, or 
by colored shades representing confidence intervals in terms of standard devia-
tion of bootstraps. Note the allele-specificity at SNPs detected by eQTeL and 
eqtnminer remains same even if we control for number of SNPs per gene.
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Fig. 12: Relative allele specificity by SNPs ( in terms of H3K4me3) identified
by different methods: X axis: rank of DHS read counts, Y axis: absolute log-
ratio of read counts mapping to the two alleles at a SNP. SNPs from different
methods are selected similar to fig 5. The median white lines represent LOESS
(local regression) for each method. Confidence interval for each median line is
estimated using bootstrapping and they are shown in the figures using either
of following two ways: by thin lines representing LOESS of each bootstrap, or
by colored shades representing confidence intervals in terms of standard devia-
tion of bootstraps. Note the allele-specificity at SNPs detected by eQTeL and
eqtnminer remains same even if we control for number of SNPs per gene.
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Fig. 13: Comparative performance of Lirnet: Comparative performance of Lir-
net in terms of explained variance and expression predictability for 200 genes.
Number of SNPs were controlled for each method (as in Fig 2). SNPs from
eQTeL were selected using posterior probability > 0.5. The figure shows (10
fold) cross-validated correlation between predicted expression using alleles of
identified SNPs for each method.
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were identified SNPs using difference in association between best-associated 
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proportion of causal SNPs among eeSNPs was estimated using ratio of relative 
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Supplementary Notes

Supplementary Note 1: Inference
We used a combination of Gibbs and Metropolis-Hasting sampling [3] to jointly
estimate the full posterior distribution of our model parameters.

1.1 Sampling γ parameters accounting for Linkage Dise-
quilibrium

We estimated linkage disequilibrium block using PLINK [4], by using default
setting of SNPs within 200kb. The effects of SNPs in Linkage Disequilibrium are
dependent on each other because the SNP alleles are highly correlated. Gibbs
or Metropolis-Hastings samplers that ignore the LD structure of SNPs can get
stuck in local minima while failing to explore high probability combinations of
γ (Fig. S15). To overcome these poor mixing properties, we devise a block
MCMC sampler that explicitly uses LD-block information to sample from the
posterior probability of a LD-block i.e.

p(γLD|.) =
P(Y |γLD,γ−LD)

∏
i p(γi|θi)∑

γ ′
LD
P(Y |γ ′

LD,γ−LD)
∏
i p(γ

′
i|θi)

where, γLD and γ−LD are γ of set of SNPs respectively within and outside the
LD-block. The resulting sampler mixed much faster (Fig. S15) by exploring
high probability models in a hierarchical fashion: we use a Gibbs sampler to
sample highly-probable combinations of LD blocks and within these sampled
LD block, and then a Metropolis-Hasting sampler is used to sample a sparse
combination of SNPs that explain expression variance.

1.2 Sampling α and θ parameters

We follow the latent variable Gibbs sampling strategy of [5] to sample the logistic
regression parameters α. Specifically, we can sample latent variables from a
Pólya-gamma distribution,

wi|α ∼ PG(1, Eiα)

(1)

and then sample α from a normal distribution,

α ∼ N(mw, Vw)

where, Vw = (FTΩF+B−1)−1, mw = Vw(F
Tκ(θ)+B−1b) with κ(θ) = (θ− .5)

and Ω being a diagonal matrix of the wi’s. Then, for each SNP i and gene j, the
regulatory-interaction potential θij is sampled from its posterior distribution as

P(θij = 1) =
φ(γij)logistic(Eiα)

φ(γij)logistic(Eiα) + (1− φ(γij))(1− logistic(Eiα))
(2)



where φ(γ) = πγπ1−γ0 . If θ were estimated based only on whether the corre-
sponding SNP was an expression-regulator (i.e based on value of γ ), then the
resulting estimation of regulatory-interaction potential would be equivalent to
supervised learning. On the other hand, if θ were sampled on posterior that
depended only on current estimate of α and not on γ, the resulting estimation
be equivalent to clustering. eQTeL, however, uses both in its posterior sam-
ple and therefore induces a semi-supervised clustering of genomic regions into
interacting regulator and neutral regions. This approach to model θ induces
a semi-supervised clustering of genomic-region into interacting-regulators and
noninteracting-regulators, since each MCMC iteration produces a sample of θij
for each SNP that depends on its γij in addition to its current estimate of
regulatory and interaction potentials.

1.3 Inference of β, σ2 and c

For simplifying the notations, in the section we only consider subset of SNPs
which were selected by the model so that X represents Xγ (this is n×q matrix,
where n is number of samples and q is total number of SNP selected in the
model). The generative model for β, σ2 and c are:

Y|β, X, γ ∼ N(XTβ, σ2I)

β|c, σ ∼ N(0, cσ2(XTX)−1)

σ2 ∼ IG(ν/2, νλ/2)

c ∼ IG(
1

2
,
n

2
) (3)

For Zellner’s g-prior ν is usually assumed to be zero. β, σ2 and c are sampled
from the full posterior distribution as:

P(β, σ2, c|Y, X) ∝ c3/2exp(−n/2c)

σ−2(ν/2+1)σ−n(cσ2)−q/2

exp{−
1

2σ2
νλ

−
1

2σ2
(Y − Xβ̂)T (Y − Xβ̂)

−
1

2σ2
(β− β̂)TXTX(β− β̂)

−
1

2cσ2
βTXTXβ} (4)

Where, β̂ = (XTX)−1XTY



P(σ2/.) ∝ σ−2(
ν+n+q
2

+1)

exp{−
1

2σ2

(
(Y − Xβ)T (Y − Xβ) +

βTXTXβ

c
+ νλ

)
}

σ2|. ∼ IG

(
ν+ n+ q

2
,
1

2
(Y − Xβ)T (Y − Xβ) +

βTXTXβ

2c
+
νλ

2

)
(5)

P(c/.) ∝ c−(q+1)/2−1

exp{−
1

2c

(
n+

βTXTXβ

σ2

)
}

c|. ∼ IG

(
q+ 1

2
,
βTXTXβ

2σ2
+ n/2

)
(6)

P(β, |.) ∝ exp{−
1

2σ2
(β− β̂)TXTX(β− β̂) −

1

2cσ2
βTXTXβ}

β|. ∼ N

(
c

c+ 1
β̂,

cσ2

c+ 1
(XTX)−1

)
(7)

1.4 Convergence of sampler

Convergence of the MCMC sampler was assessed by running 10 independent
chains and diagnostics of MCMC chain was performed using R-package “coda”.
In general, we found that the Markov chains converge within 5000 iterations of
the sampler.

1.5 Initialization

We use univariate-eQTL to initialize different parameter of the eQTeL model.

Supplementary Note 2: Further investigation into 
the reasons for eQ-TeL’s performance gain

In this paper, we have chosen to compare performance of eQTeL against eqtn-
miner since it is the only method that mostly explicitly incorporated epigenomic
data in eQTL as opposed to traditional eQTL approaches. First eqtnminer esti-
mates Bayesian factor (likelihood of association) of each SNP, assuming at most
one SNP per gene to be causal; this assumption can be limiting, because it can-
not identify combination of SNPs that jointly explain the expression variance.
It then estimates posterior probability of each SNP to be causal regulator by
modeling prior probability as a function of epigenetic data. However, eqtnminer
parameter estimation relies on maximizing a likelihood function, which is prone



to get stuck in local maxima due to correlation among different types of epige-
netic data (demonstrated in supplementary note 6 and Fig S9). Further, they
do not explicitly model relative weights of genetic and epigenetic factors in de-
termining causality of SNPs. Another approach by Lee et al. [2], does not have
the limiting assumption of single causal SNP per gene but it does not incorpo-
rate epigenomic data, making comparison infeasible. Recently, Lappalainen et
al. [6] uses Matrix-eQTL (essentially a univariate eQTL method) to find asso-
ciated SNPs, and estimates the proportion of causal SNPs by comparing their
epigenomic profiles with that of the most associated SNP per gene as a gold
standard (which is a strong assumption). Since they do not explicitly identify
causal SNPs amongst associated SNP (the only estimate proportion of causal
SNPs), this method is not directly comparable with our method.

To assess performance of eQTeL, we also chose LASSO as a representative of
multivariate regression eQTL approaches, because of its good performance and
scalability to larger datasets. Other approaches to date [7, 8, 9] that identify
causal variants in GWAS, but not in eQTL studies and therefore are not directly
comparable.

eQTeLs performance gain is potentially due to two main factors (i) inte-
gration of epigenetic data, (ii) allowing multiple causal variants per gene (cite
http://www.ncbi.nlm.nih.gov/pubmed/25104515). In quantifying the relative
contribution of each of these factors, we note that the mean correlation between
actual and predicted eQTeL-predicted gene expression, when a single causal
SNP per gene is allowed, is 0.154. This correlation improved substantially to
0.289 when 5 causal SNPs per gene are allowed in eQTeL (Fig S8). However,
in the absence of epigenomic data, i.e., when using standard LASSO, we do not
see any such performance gain, and in general, the performance is substantially
worse than that for eQTeL. This strongly suggests that allowing multiple SNP
per gene is useful in identifying regulatory SNP specifically when functional
information is used.

Another advantage of eQTeL is that it models heterogeneity in epigenetic
signatures of expression regulators. eQTeL is a hierarchical Bayesian model as
opposed to empirical Bayes model. Unlike empirical Bayes, hyper-parameters of
model are drawn from unparameterized distributions. For this reason in eQTeL
all parameters are estimated using MCMC sampling and EM approximation was
not required. Empirical prior models [10, 2, 11, 12] assumes a single signature
for all regulators and therefore cannot account heterogeneity in the type of
regulators of different genes. The eQTeL accommodates such heterogeneity
because it allows variation in parameter combinations.

Supplementary Note 3:  Other methods for 
comparison

3.1 Eqtnminer

The software tool related to Gaffney et. al. was downloaded from http: //
eqtnminer.sourceforge.net. For each of the comparative analysis, the ini-

http://eqtnminer.sourceforge.net
http://eqtnminer.sourceforge.net


tial set of SNPs per gene was kept same for both eqtnminer and eQTeL for fair
comparison. We obtained Bayesian factor for each SNPs using eqtnminer. The
parameters to calculate epigenetic prior were estimated using maximizing equa-
tion (9) of Veyrieras et. al. The parameters were initialized as recommended
by Veyrieras et. al.

To generate Fig 2, we controlled for total number of SNPs selected by eQTeL
and eqtnminer. To do so, we sorted SNPs based on eqtnminer prior probability
and selected top 2428 SNPs. As Gaffney et. al. recommend the eqtnminer
for single SNP per gene, we compared the performance of eqtnminer in main
manuscript (Fig 5, 6 and 8) using single SNP per gene for footprint enrichment,
allele-specificity and ChiA-PET enrichment analyses. We repeated that analysis
by controlling for number of SNPs per gene between eQTeL and eqtnminer; the
eQTeL still outperform eqtnminer in that case. To generate Fig S8, for each
gene we selected N (= 1,2, 3 and 5) top SNP(s) based on eqtnminer posterior
probability.

3.2 LASSO

R-package GLMNET was used for L1 regulaizer multivariate regression (LASSO).
LASSO estimates effect size (regression coefficient), for the SNP included in
the model. We used 10-fold cross validation to estimate the hyper-parameter
(lambda, regularization parameter). For each of the comparative analysis, the
initial set of SNPs per gene was kept the same for both LASSO and eQTeL for
fair comparison.

To generate Fig 2, we controlled for total number of SNPs selected by eQTeL
and LASSO. To do so, we sorted SNPs based on absolute value of effect size
estimated by LASSO-selected top 2428 SNPs. To generate Fig S8, for each gene
we selected N (=1,2,3 and 5) top SNP(s) based on absolute value of estimated
effect size estimated by LASSO.

3.3 Matrix-eQTL /univariate-eQTL (Lappalainen et. al.)

We used R package matrix-eQTL (http://www.bios.unc.edu/research/genomic_
software/Matrix_eQTL/), to perform univariate-eQTL as recommended by
Lappalainen et. al.

3.4 Epigenetic-only model

In simulation study, α parameters were learned, in supervised manner, by using
enhancers as training example. Bayesian logistic regression [5] was used to learn
α. Based on learned α, SNPs were sorted based on their regulatory potential.

3.5 Known-epigenetic-prior-eQTeL

Known-epigenetic-prior-eQTeL, is a version of eQTeL (for simulation study
only) where instead of estimating α, the α used to generate regulatory po-

http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
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tential for simulation study was used. Thus it is a theoretically best model for
eQTeL.

3.6 Variable selection method

Variable selection model was implemented by modifying eQTeL model as follows:
(a) informative prior was changed to uninformative priors. (b) hierarchical
sampling SNP (based on LD block) was switched off; each SNP were processed
sequentially, similar to Liang et. al. [13].

3.7 Lirnet

Lirnet was downloaded from (http://homes.cs.washington.edu/~suinlee/
lirnet/). Because of computational limitation of lirnet (it takes 13 days of
CPU processing in a 64 core machine to process 200 genes), this analysis was
limited to 200 random genes. Hyper-parameter of the model was set by cross-
validation as recommended in Lee et. al. [2]. For comparing the performance
of Lirnet with eQTeL we ran eQTeL with same set of 200 genes.

Figure 13 demonstrates that eQTeL outperforms Lirnet in terms of explained
variance and prediction accuracy ( we controlled for number of SNPs selected
by each methods). Figure 8 also demonstrates that higher fraction of of SNPs
detected by eQTeL overlaps with footprints, suggesting eeSNPs are more likely
to be functional compared to SNPs detected by Lirnet.

Supplementary Note 4:  Eqtnminer subset selection
We used 95 dimensional epigenetic and interaction features, (Fig 2) to learn
interacting-regulatory potential by eQTeL. Many of the features have very high
correlation between them. When the 95 dimensional features were used for
learning prior in eqtnminer, the alpha parameters (feature importance) were not
learned accurately. This is most probably due extreme correlation between
different input features that might cause the maximization function to stuck in a
local maximum. To analyze this further, we used 8 features of the 95 dimensional
features, which were given high feature importance by eQTeL and does not have
extreme correlation. The performance improved substantially, although eQTeL
performed better compared to eqtnminer(Supplementary Fig. 9).

Supplementary Note 5: Multiple hypothesis 
correction/sparsity con-strains

Here we demonstrate that eQTeL model can detect causal expression-regulatory
SNP even if they have small effect size by analyzing sparsity constraints by

 http://homes.cs.washington.edu/~suinlee/lirnet/
 http://homes.cs.washington.edu/~suinlee/lirnet/


association methods on the simulated dataset. Normally, due to multiple-
hypothesis test correction (equivalent to sparsity constraint in Bayesian models),
expression-regulators with small effect on expression are missed. Fig. 6. shows
effect-size distribution of identified causal SNPs by univariate-eQTL and eQTeL
when the same number of SNPs is selected by each methods. Univariate-eQTL
cannot identify causal SNPs with low effect-size because of severe multiple-
hypothesis correction. eQTeL, however, detects causal SNPs with small effect-
size. Although the recall-rate decreases with the effect size for eQTeL it can more
effectively retrieve causal SNP with small effect size, particularly those with rel-
atively high interacting-regulator potential. Since there are fewer SNPs which
are within an interacting-regulator, selection of expression regulators among
those SNPs can be made under a relatively less severe sparsity constraint (or
equivalently, multiple hypothesis correction). This is evident from from Fig.
6. Moreover, recall rate of eQTeL is relatively higher for top 50% causal SNPs
with stronger interacting-regulatory potential (eQTeL-high) than for the bottom
50%. This suggests that eQTeL applies a relatively lower sparsity constraint on
interacting-regulators.

Supplementary Note 6: Explained variance and 
expression predictability
Different methods are known have biases in estimating effect size β. For in-
stance, LASSO is know to over-shrink the parameters, therefore it is recom-
mended that first LASSO be used for feature selection and then β be estimated
independently for selected features[14]. To remove such biases and compare
performance of different methods in an unbiased manner, each methods were
used for regulatory SNPs identification only and β was independently estimated
using cross-validation training set as follows.

For each method, explained variance and expression predictability was esti-
mated using k fold cross-validation. Samples were randomly partitioned into k
subsamples. k − 1 of subsamples were used for estimating β for selected SNPs
as β̂train = (XTX)−1XTY, while retaining one subsample for validation. In the
validation subsample expression was predicted as Ŷtest = XT β̂train. Expres-
sion predictability was defined as Pearson correlation between Ytest and Ŷtest.

Explained variance was calculated as 1 − var(Ytest−Ŷtest)
var(Ytest)

. This process is re-

peated k times, using each k subsamples for validation exactly once. The mean
and standard deviation of explained variance of expression predictability and
explained variance was calculated for k test subsamples.

Supplementary Note 7: Scalability and computation

eQTeL uses shared memory multiprocessing to process genes in parallel. This
makes it feasible to run Gibbs sampler to process thousands of genes with million
of putative SNPs. In order to calculate Bayesian factor of SNP, we use fast



Choleksy-update algorithm described in Dongarra et al. (Ch 10. [15]). Further,
while calculating feature importance α at each Gibbs iteration we randomly
sample subset of interacting-regulator and non-regulators to: a) speed up the
eQTeL model and b) avoid over-fitting while estimating α.

The software GOAL that implements the eQTeL model uses the multiple
cores to speed up the process. In addition, we use several efficient algorithms
from LAPACK to efficiently update the Choleskythe most computation intensive
part of eQTeL. GOAL can efficiently handle million of SNPs for thousand of
genes because it process each genes in parallel in a separate thread. In addition,
the epigenetic importance can be estimated using subset of genes; and given the
importance estimated each of genes could be processed independently.
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