Table S1

Summary of outputs generated from different trans-membrane prediction algorithms used to analyse the *VviCCC* full-length amino acid sequence.

	Number of	
Server	TM Helices	Website
SOSUI	11	http://bp.nuap.nagoya-u.ac.jp/sosui/
TMHMM V2.0	11	www.cbs.dtu.dk/services/TMHMM/
НММТОР	11	http://www.enzim.hu/hmmtop/
	11 (12th	http://mobyle.pasteur.fr/cgi-
TopPred	putative)	bin/portal.py?#forms::toppred
PSIPRED (MEMSTAT 3)	11	http://bioinf.cs.ucl.ac.uk/psipred/

Table S2

Accession numbers of plant *CCC* genes used for multiple sequence alignment.

Species	Accession	References
Arabidopsis thaliana	NP_849732	Colmenero- <mark>Flores</mark> et al., 2007
Oryza sativa	ADB03187.1	Kong et al., 2011
Nicotiana tabacum	AAC49874.1	Harling et al., 1997
Vitis vinifera	VIT10s0003g04530	This study
Lotus tenuis	ACE78321.1	Teakle et al., unpublished
Citrus clementina	CBJ19439.1	Brumos et al., 2010

Table S3

Primers used in this study.

			NCBI accession		Product
Gene	Primer	Primer Sequence 5'-3'	number	Application	size (bp)
	Forward	ATGGACAACGGAGACATTGAA			
	Reverse	CTATGTGAAAAGGGTGACAACAT			
Vv <mark>i</mark> CCC	Reverse no stop	TGTGAAAAGGGTGACAACATCT	XM_002274763	Cloning	2949
Vv <mark>i</mark> CCC::YFP	Reverse	CTAGATAGATCTCTTGTACAGCTCGT	XM_002274763	Cloning	3714
	Forward	CTTGCATCCCTCAGCACCTT			
Vv <mark>i</mark> ACT1ª	Reverse	TCCTGTGGACAATGGATGGA	XM_002282480	qRT-PCR	82
	Forward	GAACTGGGTGCTTGATAGGC			
Vv <mark>i</mark> EF1-a ^b	Reverse	AACCAAAATATCCGGAGTAAAAGA	XM_002284888	qRT-PCR	150
Vv <mark>i</mark> UBO-	Forward	CATAACATTTGCGGCAGATCA			
L40 ^a	Reverse	TGGTGGTATTATTGAGCCATCCTT	XM_002273532	qRT-PCR	80
	Forward	CCACCTCTCAACCACCCAG		aBT-PCB	
Vv <mark>i</mark> CCC	Reverse	ACAACATCTCTACGGTATCCCCT	XM_002274763	RT-PCR	104
	Forward	TGAGCAAAGAAATCACAGCACT			
AtActin2	Reverse	CCTGGACCTGCCTCATCATAC	At3g18780	RT-PCR	166
	Forward	ATAGCGGCGACATTGAAGAAG			
AtCCC	Reverse	GATGGTGCCTGAATTTGCTC	At1g30450	RT-PCR	325
	LP	CCATTGACTCAAATCAGACGG		Screening	
	RP	TTGTTTTCCGTTAATTCGTCG		Salk line for	092 07
AtCCC	LBa1	TGGTTCACGTAGTGGGCCATCG	At1g30450	insertion	450-570

^a Designed by Reid et al., (2006)

^b Designed by Terrier et al., (2005)

- Reid K, Olsson N, Schlosser J, Peng F, Lund S (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology 6: 27
- Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin J-P, Dédaldéchamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (*Vitis vinifera* L.) development. Planta 222: 832-847

Transient co-expression of AtCCC-GFP with various subcellular markers in epidermal cells of *Nicotiana benthamiana*. *N. benthamiana* leaves were co-infiltrated with *A. tumefaciens* strains harbouring AtCCC-GFP and either the plasma membrane-marker AtPIP2a-mCherry (A), ER marker HDEL-mCherry (B), Golgi marker ManI-RFP (C) or TGN-marker RFP-SYP61 (D). Leaf sections were imaged by confocal laser scanning microscopy. mCherry- and RFP-signals are shown in magenta in the left panel. GFP-signals are shown in green in the middle panel. Co-localization of green and magenta signals appears in white in the right panel. Scale bar = 10 µm.

Subcellular localisation of VviCCC and AtCCC in Arabidopsis mesophyll protoplasts. Protoplasts were transiently co-transfected with the PM marker Rop11-CFP and (A) Vv_i CCC-YFP (Scale = 25 µm) or (B) AtCCC-YFP (Scale = 20 µm), or the TGN marker Vti12-TFP and (C) Vv_i CCC-YFP (Scale = 20 µm) or (D) AtCCC-YFP. Protoplasts were imaged by confocal laser scanning microscopy. Fluorescent signals are indicated within each panel. Merged images include the brightfield channel.

cDNA coding sequences of *VviCCC* from K51-40 and 140-Ruggeri. Heterozygous regions within the cDNAs that do not affect the amino acid sequence of their respective proteins are shown in red. The only nucleotide polymorphism that could result in an amino acid change is conserved between rootstocks, and this is shown in blue.

Coding sequence of VviCCC from K51-40

ATGGACAACGGAGACATTGAAAACGCGGAAGACGAGTTCGGCGGGCAAAGCGGACGCAAATACAGACCAGTCGT TTTCACGAACCTTAAAATAAGCATGCAGGGAAACATGAGTTCTGATGCAAGAGAAGAGTCATCTACTAATCATGA AGAACTCAATGGTTCTGAAAGAGAATCCAAATTGGAATTGTTCGGTTTTGACTCTCTTGTTAATATTCTAGGTCTTA AGAGTATGACAGGGGGAGGCAATTGCAGCTCCTCGAGTCCTAGAGATGGCGAGGATGTTTCTATCACCTGG GCGTTCCAAGGCTAATGATCTCAAATTAGGGACATTGATGGGAGTATTTGTGCCGTGCTTGCAAAACATTTTAGGA ${\tt GGTTTGTGTACTTTCCTGACTTCGATATCATTGAGTGCTATCGCAACTAATGGTGCAATGAAGGGTGGGGGGGCCAT}$ ATTATCTCATTGGTCGTGCCCTTGGTCCAGAAGTTGGAGTTAGCATTGGACTATGTTTCTTCCTTGGGAATGCAGTA TTGTCACAAAAGTTAATGGCACAGAAGCTGCAGTGGCCGTTCCAAGTCCAAATTTGCATGACCTGCAAGTCTATGG GATAGTTGTGACGATAATCCTATGCTTTATTGTGTTTGGTGGTGTTAAGATGATCAATCGGGTTGCACCTGCTTTCC TTATACCTGTTTTATTCTCCTTGTTCTGCATATTTGTTGGGGGCTGTTTTGGCAAGAAAGGATCACCCTGCTGTTGGA GTCACTGGCTTGAGTTTGAAATCCTTAAAAGATAATTGGAGCTCGAGTTATCAAAAATACTAATAATGCTGGAATAC ${\tt GCAGGTTCAAATCGCTCTGCTTCATTGAGAGAGACACTCAACGTTCAATTCCTGTTGGAACATTGGCTGCGACTCTTTC}$ TACTAACTGCTACAATTGCTTGGCCTTTACCGGCAATTATTTACATTGGAATTATCCTTTCAACCTTAGGGGCGGCG ${\sf CAGAGTTGCTGAAGGGAGTGAACCTCATATTGCAACCCTCTTTACTGCATTAATCTGTATTGGGTGTGTCATAATC}$ GGGAATCTGGATCTTATCACACCAACAATTACCATGTTTTTCCTTTTGTGTTATGCTGGTGTGAACTTGTCTTGCTTC AGTTCTTTGTATAGTGATCATGTTCTTGATATCTTGGTCATTTACTGTGGTGTCCCTAGCCCTTGCAAGTCTCATATA TTATTATGTATGCATCAAAAGGGAAGGCTGGGGGACTGGGGTGATGGCTTCAAGAGTGCATATTTCCAACTAGCCCTT CGTAGTCTTCGATCACTGGGGGGCAAGCCAAGTGCACCCAAAGAACTGGTATCCTATTCCCCTCATATTCTGCCGGC CATGGGGGAAGCTGCCAGAGAATGTGCCCTGCCACCCTAAATTAGCTGACTTGCTAACTGCATGAAGAAAAAGG GTCGTGGAATGTCCATTTTTGTCTCTATTTTAGATGGAGATTACCATGAGTGTGCAGAAGATGCCAAGACAGCCTG CAGGCAGCTGAGTACCTACATTGACTATAAGCGCTGTGAAGGTGTTGCAGAGATAGTTGTGGCCCCCAGTATGTCA GATGGCTTCCGTGGCATTGTCCAAACTATGGGCCTAGGCAATCTTAAGCCCCAAACATTGTGGTCATGCGATACCCT ACAAGGCAGTTGTGAT CTGTATTGGATTGTGAGAGAGAGGGGGGCCTTATGCTTCTCCCCCA<mark>A G</mark>CTCCCTCCTTACCAAGGAGAGCTTTGAG AGTTGTAAGATTCAGGTCTTCTGCATTGCGGAGGAGGAGGATTCTGATGCAGAGGAGCTCAAGGCTGATGTCAAGAAGTTTTTGTATGATCTTCGCATGCATGCTGAAGTGATTGTTATATCGATGAAATCATGGGACGCCCAAGGAGAAGGAG AGGAGGCAGCTAAGAGGGAAGGAACTCCACTGATGGCTGATGGGAAATCTGTGGTTGTGAATGAGCAACAGGTG GAGAAATTTCTTTACACAACACTGAAGCTTAATTCGACAATACTTAGATACTCAAGAATGGCTGCAGTCGTGCTTG

 ${\tt TGAGCTTACCACCACCACCTCTCAACCACCCAGCGTATTTCTACATGGAGTACATGGATCTTTTGGTAGAGAATGT} \\ {\tt ACCTAGGCTTTTGATGGTAAGGGGATACCGTAGAGATGTTGTCACCCTTTTCACATAG} \\$

Coding sequence of VviCCC from 140 Ruggeri

ATGGACAACGGAGACATTGAAAACGCGGAAGACGAGTTCGGCGGGCAAAGCGGACGCAAATACAGACCAGTCGT CTCGCATGACCGCGCTGTTCTCCAAATGTCCTCTTTGGATTCCGGATCTTCCTCTCTCCCCGTCCCTCAATCACC TTTCACGAACCTTAAAATAAGCATGCAGGGAAACATGAGTTCTGATGCAAGAGAAGAGTCATCTACTAATCATGA AGAACTCAATGGTTCTGAAAGAGAAACCCAAATTGGAATTGTTCGGTTTTGACTCTCTTGTTAATATTCTAGGTCTTA AGAGTATGACAGGGGAGGCAATTGCAGCTCCTTCGAGTCCTAGAGATGGCGAGGATGTTTCTA ${\tt CGTTCCAAGGCTAATGATCTCAAATTAGGGACATTGATGGGAGTATTTGTGCCGTGCTTGCAAAACATTTAGGAA}$ GTTTGTGTACTTTCCTGACTTCGATATCATTGAGTGCTATCGCAACTAATGGTGCAATGAAGGGTGGGGGGGCCCATA TTATCTCATTGGTCGTGCCCTTGGTCCAGAAGTTGGAGTTAGCATTGGACTATGTTTCTTCCTTGGGAATGCAGTAG CTGGATCTCTTTATGTGCTGGGAGCTGTAGAAACCTTCTTAGATGCCTTGCCAGGTGCTGGGATTTTTGGAGAGGTTGTCACAAAAGTTAATGGCACAGAAGCTGCAGTGGCCGTTCCAAGTCCAAATTTGCATGACCTGCAAGTCTATGGGATAGTTGTGACGATAATCCTATGCTTTATTGTGTTTGGTGGTGTTAAGATGATCAATCGGGTTGCACCTGCTTTCCT TATACCTGTTTTATTCTCCTTGTTCTGCATATTTGTTGGGGGCTGTTTTGGCAAGAAAGGATCACCCTGCTGTTGGAG TCACTGGCTTGAGTTTGAAAATCCTTAAAAGATAATTGGAGCTCGAGTTATCAAAAATACTAATAATGCTGGAATACC GGCAGGTTCAAATCGCTCTGCTTCATTGAGAGACACTCAACGTTCAATTCCTGTTGGAACATTGGCTGCGACTCTTT GGCTACTAACTGCTACAATTGCTTGGCCTTTACCGGCAATTATTTACATTGGAATTATCCTTTCAACCTTAGGGGCG CTTCAGAGTTGCTGAAGGGAGTGAACCTCATATTGCAACCCTCTTTACTGCATTAATCTGTATTGGGTGTGTCATAA ${\tt TCGGGAATCTGGATCTTATCACACCAACAATTACCATGTTTTTCCTTTTGTGTTATGCTGGTGTGAACTTGTCTTGCT}$ TCCTTCTGGATCTTCTAGATGCTCCCAGTTGGCGTCCACGATGGAAATTTCACCACTGGAGCCTCTCTTCTTGGA GCAGTTCTTTGTATAGTGATCATGTTCTTGATATCTTGGTCATTTACTGTGGTGTCCCTAGCCCTTGCAAGTCTCATA TATTATTATGTATGCATCAAAAGGGAAGGCTGGGGGACTGGGGGTGATGGCTTCAAGAGTGCATATTTCCAACTAGCCC TTCGTAGTCTTCGATCACTGGGGGGCAAGCCAAGTGCACCCAAAGAACTGGTATCCTATTCCCCTCATATTCTGCCG GCCATGGGGGAAGCTGCCAGAGAATGTGCCCTGCCACCCTAAATTAGCTGACTTTGCTAACTGCATGAAGAAAAA GGGTCGTGGAATGTCCATTTTTGTCTCTATTTTAGATGGAGATTACCATGAGTGTGCAGAAGATGCCAAGACAGCC TGCAGGCAGCTGAGTACCTACATTGACTATAAGCGCTGTGAAGGTGTTGCAGAGATAGTTGTGGCCCCCAGTATGT ${\sf CAGATGGCTTCCGTGGCATTGTCCAAACTATGGGCCTAGGCAATCTTAAGCCGAACATTGTGGTCATGCGATACCC}$ TGAAATATGGCGTCGGGAAAAACCTAATTGAAATCCCAGCTACCTTTGTTGGCAT<mark>T/A</mark>ATTAATGACTGCATTGTTGC AAACAAGGCAGTTGTGATGTCAAGGGCCTTGATGAATGGCCCAATGAGTATCAAAGGCAGTATGGTACTATTGA TCTGTATTGGATTGTGAGAGATGGGGGGCCTTATGCTTCTCCCCAGCTCCTCCCTACCAAGGAGAGCTTTGAGA GTTGTAAGATTCAGGTCTTCTGCATTGCGGAGGAGGAGGATTCTGATGCAGAGGAGCTCAAGGCTGATGTCAAGAAGT TTTTGTATGATCTTCGCATGCATGCTGAAGTGATTGTTATATCGATGAAATCATGGGACGCCCAAGGAGAAGGAGT GGAGGCAGCTAAGAGGGAAGGAACTCCACTGATGGCTGATGGGAAATCTGTGGTTGTGAATGAGCAACAGGTGG AGAAATTTCTTTACACAACACTGAAGCTTAATTCGACAATACTTAGATACTCAAGAATGGCTGCAGTCGTGCTTGT GAGCTTACCACCACCACCTCTCAACCACCCAGCGTATTTCTACATGGAGTACATGGATCTTTTGGTAGAGAATGTA CCTAGGCTTTTGATGGTAAGGGGGATACCGTAGAGATGTTGTCACCCTTTTCACATAG

Figure S4

⁸⁶Rb uptake by *Xenopus* oocytes in high K buffer. Oocytes injected with water (white bars) or cRNA encoding *VviCCC* (black bars) were bathed in radioactive uptake buffer containing ⁸⁶Rb for 1 hour. Each data point is the mean \pm SEM of 10 oocytes. Asterisk indicates significant difference between water and *VviCCC* injected oocytes (t-test, P < 0.01).

Method

Oocytes were preincubated in Cl⁻-free ND96 for 2 hours before the experiment (Cl⁻ replaced with gluconate). Oocytes were then transferred to K⁺ and Cl⁻- free ND96 plus ouabain for 10 minutes to block the Na⁺/K⁺ ATPase. Oocytes were then transferred to flux buffer for 60 minutes. Oocytes were washed 3 times in ice cold flux buffer without isotope, and dissolved overnight in 10 % SDS. Uptake was then measured by scintillation counting. The flux buffer contained: 96 mM KCl; 2 mM NaCl; 1.8 mM CaCl₂; 1 mM MgCl₂, 5 mM Hepes pH 7.4

Tris, 1 mM Ouabain, 2 uCi/ml ⁸⁶Rb.

Figure <mark>S5</mark>

Confirmation of a homozygous T-DNA insertion in the Arabidopsis mutant line Salk_145300. (A) Schematic representation of *AtCCC* gene structure with black boxes representing exons and position of the T-DNA insertion (triangle) and primers (arrows) shown. (B) PCR of genomic DNA to confirm homozygosity.

Figure <mark>S6</mark>

Complementation of the *ccc* phenotype with Vv_i^iCCC . Two plants of each Arabidopsis line are shown for further confirmation of the ability of Vv_i^iCCC to complement the *atccc* phenotype.

Figure <mark>S7</mark>

AtCCC is not regulated by salt stress in Arabidopsis roots. Quantitative real time PCR of whole roots of hydroponically grown, 5-week old wild-type Columbia-0 exposed to 0 mM (black bars), 50 mM (white bars) or 100 mM (grey bars) NaCl for 7 days. Bars represent the mean of 3 biological replicates \pm SEM. Data are relative to the untreated (0 mM NaCl) replicated with lowest transcript abundance (set to 1). No significant differences were observed between treatments (ANOVA with Tukey's post hoc test).

Figure <mark>S8</mark>

Multiple sequence alignment of six plant *CCC* family members. This alignment was used to generate the alignment and neighbour joining tree of Figure 1A. Shading is white (non-similar), light grey (similar), dark grey (> 50% conserved) and black (all match).

Salk-145300 35S-VviCCC #1 Salk-145300 35S-VviCCC # 2

Salk-145300 35S:VviCCC # 1

For 1 insertion segregating at 3:1 ratio

	Observed	Expected	(Obs-Exp) ² /Exp
Resistant	110.00	101.25	0.76
Sensitive	25.00	33.75	2.27
Total	135.00	135.00	3.02

 $\label{eq:constraint} \begin{array}{l} \chi^2 = 3.02 \mbox{ for 1 d.f.} \\ 0.05 < P < 0.1. \mbox{ Not significant deviation} \\ \mbox{ from expected.} \end{array}$

Col-0

Salk-145300 35S:VviCCC # 2

For 2 insertions segregating at 15:1 ratio

	Observed	Expected	(Obs-Exp) ² /Exp
Resistant	119.00	120.94	0.03
Sensitive	10.00	8.06	0.47
Total	129.00	129.00	0.50

 $\label{eq:constraint} \begin{array}{l} \chi^2 = 0.5 \mbox{ for 1 d.f.} \\ 0.3 < P < 0.5. \mbox{ Not significant deviation} \\ \mbox{ from expected.} \end{array}$

Figure <mark>S9</mark>

Identification of T-DNA copy number in complemented Arabidopsis mutants. (Upper panel) Two independent transformants from the T2 generation were grown on MS Agar plates containing hygromycin (15 μ g.ml⁻¹). (Lower panel) number of T-DNA inserts was estimated by measuring Mendelian segregation ratios and performing chi square analysis.