SUPPLEMENTAL MATERIAL

Ectopic expression of WRI1 affects fatty acid homeostasis in *Brachypodium distachyon* vegetative tissues[‡]

Yang Yang^{1,2}, Jacob Munz^{2,3,†}, Cynthia Cass^{2,3}, Agnieszka Zienkiewicz^{1,2}, Que Kong^{1,2}, Wei Ma^{2,4}, Sanjaya^{2, §}, John Sedbrook^{2,3}, Christoph Benning^{1,2,5,*}

Supplemental Figure S1. Alignment of WRI1 amino acid sequences from Brachypodium and Arabidopsis.

Supplemental Figure S2. Lipid droplets are abundant in embryo and endosperm of *UBI::BdWRI1* line 5A dry grains.

Supplemental Figure S3. Lipid droplets in the internodes of UBI::BdWRI1 plants.

Supplemental Figure S4. Ectopic expression of *AtWR11* also led to cell death in Brachypodium.

Supplemental Figure S5. Ectopic expression of *AtWR11* in Arabidopsis did not lead to cell death.

Supplemental Figure S6. No induction of TAG turnover in *35S::AtWR11* vegetative tissues of Arabidopsis.

Supplemental Figure S7. Palmitic acid (16:0) treatment of Brachypodium leaf blade results in cell death.

Supplemental Table S1. PCR primers used in real-time RT-PCR.

Figure S1. Alignment of WRI1 amino acid sequences from Brachypodium and Arabidopsis. The alignment was analyzed by Jalview software. The blue boxes indicate highly conserved amino acids. The red box delineates the "VYL" motif, which is important for AtWRI1 function.

Figure S2. Lipid droplets are abundant in embryo and endosperm of *UBI::BdWRI1* line 5A dry grains. A-C, confocal fluorescence micrographs of *UBI::BdWRI1* line 5A embryo. D-F, confocal fluorescence micrographs of *UBI::BdWRI1* line 5A endosperm.. Bars=20 μm.

Figure S3. Lipid droplets in the internodes of *UBI::BdWRI1* plants. A and B, Nile Red staining of 8-week-old Bd21-3 leaf blade (A) and internode (B). Bar=5 μm. C and D, Nile Red staining of 8-week-old *Ub::BdWRI1* leaf blade (C) and internode (D). Bar=5 μm.

Figure S4. Ectopic expression of *AtWRI1* also led to cell death in Brachypodium. A and B, Phenotypes of 8-week-old leaf blades from Bd21-3 (A) and *UBI::AtWRI1* plants (B). Bars=1 mm. C and D, H₂DCF-DA staining of 8-week-old leaf blades from Bd21-3 (C) and *UBI::AtWRI1* plants (D). Bars=20 μm.

A, phenotypes of 4-week-old *35S::AtWRI1* leaves (top panels). General ROS accumulation was detected by H₂DCF-DA staining (middle panels, Bars=20 μm). H₂O₂ accumulation was detected by DAB staining (lower panels, Bars=0.5 mm). B, quantification of cell death by electrolyte leakage assay. 4-week-old detached leaves were inoculated with water for 3 hours and then excised to measure conductivity. Each value represents the mean and SD of three replicates.

Figure S6. No induction of TAG turnover in *35S::AtWR11* vegetative tissues of Arabidopsis. A and E, expression levels of *AtWR11* (A) and key genes predicted to encode enzymes involved in TAG degradation (E) in 4-week-old leaf tissues from *35S::AtWR11* plants. Total RNA was isolated and relative mRNA levels were determined by quantitative real-time RT-PCR using *AtACT1N1* as an internal control. Data represent three independent experiments, and the error bars represent SD. * indicates significant difference (p<0.05, student's t-test), and ** at p≤0.01. B, C and D, free FA contents (B), composition of free FA (C), and FA composition of TAG (D) from 4-week-old tissues of *35S::AtWR11*. Total lipids were extracted and TAGs were separated by TLC. Three independent measurements were averaged, and the error bars represent SD. * indicates significant difference (p<0.05, student's t-test), and ** at p≤0.01.

Figure S7. Palmitic acid (16:0) treatment of Brachypodium leaf blade results in cell death. Phenotypes of wild-type Bd21-3 detached leaf blades treated with 200 μ m 16:0 for 48 hours. Bars=0.5 mm.

Species	Gene	Gene ID	Primer sequence
	BdWR11	Brai4g43877	F: 5'-CACCTCCCTTACGGTTGATGACA-3'
Brachypodium			R: 5'-GCATTCTTCAAACAGGCACCCA-3'
	BdPKP-β1	Bradi2g45620	F: 5'-TACCAAGGCGTTTGCCCAGTT-3'
			R: 5'-TGAATATTGTGGGTGGATTGCGAC-3'
	BdKASI	Bradi1g46610	F: ATCCGAAGAAGCGGGTGG
			R: GCCCACGCCGCTCTCTC
	BdACP1	Bradi1g01000	F: CCTTCTTCCCGTCGGTTCAGC
			R: CGTGTCAAGTGAATCAGCCCCA
	BdSDP1-1	Bradi2g50610	F: GGGATTGCTGGACCATCTAACA
			R: CAGTATCACTTCCGCTTTCCCT
	BdSDP1-2	Bradi1g04310	F: AACAAGGTCCTGGAGCATCAAA
			R: GGAGTGGAGAGATGTGAGGATTAG
	BdACX1	Bradi1g52320	F: TTCCAAGGCTTTGTCCCGT
			R: CTCACCCACAAATCTAAATGCATAA
	BdACX2	Bradi4g14090	F: CCTACTTGTCCCAGCCTAATCCC
			R: TGCAAGTGTGAGCAGATGGTTT
		Bradi4g26610	F: GAGAAATTTGTGTCCGGGGACC
	BalaCS6		R: TCCAGGCAGCCACAAACC
	BdLACS7	Bradi4g42950	F: GGTGGACGGGTGAGGCTTAT
			R: AGGGTTTGGAGATCCAACATGAC
	BdMFP2-1	Bradi2g43020	F: AACACAGTTCGGAATGCCAATG
			R: CATCGCTCAGGAAAACTTTGGTAAT
	BdMFP2-2	Bradi4g28310	F: TAAGGGTGAGGAGGCATACCAA
			R: TCCAAAGCCCAACGACGAG
	BdMFP2-3	Bradi4g28310	F: TGGTTTTGGTGTTGCTGTGGC
			R: GTGGCTTCACCTGCCCTTTT
	BdKAT1	Bradi3g27960	F: GGGCTTCAGGCAGTCGCAGAT
			R: AGGCAATCACGTGCTTGAGAAAATA
	BdKAT2	Bradi3g55420	F: GATGGTGCTGGAGCCGTTCT
			R: CTACCGCAGGACCAACGCC
	BdUBC18	Bradi4g00660	F: GGAGGCACCTCAGGTCATTT
			R: ATAGCGGTCATTGTCTTGCG
	AtWRI1	At3g54230	F: 5'-AAAGGTGTTTTCCCGTTCCCTGTGA-
			3'
			R: 5'-TAGGCTCTTCCTTCGCTTCTCTCGT-3'
	AtSPD1	At5g04040	F: 5'-AAATGGCTTACCGGAGGAAGTT-3'
Arabidopsis			R: 5'-TGAGCCCATTCCTCATAAGTCA-3'
	AtACXI	At4g16760	F: 5'-ACGGATGTAACTGAAAGACTGGC-3'
			R: 5'-GTGGTGGTGAGAGACTTCAATCCTG-
			3'
	AtACX2	At5g65110	F: 5'-TGTTCACGCCTTCATTGTTCCG-3'
			R: 5'-TCAACGCACCATTATCCACTCCATT-3'

Supplemental Table S1. PCR primers used in real-time RT-PCR

Species	Gene	Gene ID	Primer sequence
Arabidopsis	AtLACS6	At3g05970	F: CTACTGGATGATTTGGCTGCTC
			R: CTTTCCATTCAAGAGAGCCTGC
	AtLACS7	At5g27600	F: GGTTACCTGGTGGTCGGCTC
			R: TGAAACACTGCGAAACGAATCTA
	AtKAT1	At1g04710	F: CCAGCCGTTGCCATTCCT
			R: ATAAACAAACTGAGATGCAAATGCC
	AtKAT2	At2g33150	F: CGAGATGAAACGCCGTGGTA
			R: GACCTTGCGCTTCAACTTTCCTT
	AtMFP2	At3g06860	F: GAGGAAGGTCATTCTTTGGGTCT
			R: AACGTCAGTATCTCCCTTGCCTCT
	AtACTINI	At2g37620	F: 5'-CTCTGTCTGGATTGGAGGGTC-3'
			R: 5'-GCTTGAGAAATGGTCGGAAA-3'

Supplemental Table S1 continued