

Supplemental Figure S1. TET expression in seedlings, seeds and TET3 protein localization. Transgenic plants shown are: pAtTET1::NLS-GFP/GUS (C and D), pAtTET3::NLS-GFP/GUS (A), p35S::TET3:GFP (B), pAtTET4::NLS-GFP/GUS (E), pAtTET8::NLS-GFP/GUS (F-I), pAtTET9::NLS-GFP/GUS pAtTET12::NLS-GFP/GUS (J-L). (M), and pAtTET14::NLS-GFP/GUS (N). A, TET3 expression in the SAM. p, primordia. Asterisk indicates the TET3 expression in the SAM organizing center of layer 3. B, TET3 protein localization at the plasmodesmata of cotyledons. Arrows indicate plasmodesmata. C and D, TET1 expression in the leaf vascular tissue and in the SAM, respectively. E, TET4 expression in the stomatal guard cells. F-I, TET8 expression in the stipules, hydathodes, endosperm and presumably synergid cells, respectively, as indicated by arrows in each panel. J-L, TET9 expression in the leaf, trichome and SAM, respectively. M, TET12 expression in the stipules, as indicated by arrows. N, TET14 expression in the leaf vascular tissue. Scale bars represent 5 µm (A and B), 1 mm (C, G, J and N), 0.1 mm (D, F, H, K and L), 0.05 mm (E), 0.01 mm (I), and 0.5 mm (M).

Supplemental Figure S2. TET expression in flower organs. Transgenic plants shown are: pAtTET1::NLS-GFP/GUS (A and C), pAtTET2::NLS-GFP/GUS (C), pAtTET3::NLS-GFP/GUS (C), pAtTET4::NLS-GFP/GUS (A and C), pAtTET5::NLS-GFP/GUS (A-C). pAtTET6::NLS-GFP/GUS (A-C), pAtTET7::NLS-GFP/GUS (C), pAtTET8::NLS-GFP/GUS (A and C), pAtTET9::NLS-GFP/GUS (C), pAtTET10::NLS-GFP/GUS (C), pAtTET11::NLS-GFP/GUS (C), pAtTET13::NLS-GFP/GUS (C), pAtTET14::NLS-GFP/GUS (A and C), pAtTET15::NLS-GFP/GUS (B and C), and pAtTET16::NLS-GFP/GUS (A and C). A, Overview of whole inflorescences and single flowers. Arrowheads indicate the stigma transmitting tract. Insets in pAtTET4 and pAtTET8 show stomatal guard cells at the anther, and the magnification of the stigma and transmitting tissue, respectively. B, TET5 and TET6 expression in the funiculus. TET15 activity in the pollen tube and stomatal guard cells of the sepal. C, TET expression in the pollen and stamen filament tissues. Scale bars represent 1 mm (A), and 0.1 mm (B and C).

Supplemental Figure S3. *tet13-1* primary root morphology. A, Root meristem size of 6-d-old seedlings. Means are presented \pm sd (n=28-39). Arrows indicate the boundary between the root meristem and the transition zone. B and C, Lugol solution staining of starch in differentiated columella cells (B) and quantification of seedlings showing one or two layers of stem cells (C). Means are presented \pm sd (n=125-130). Black and white arrows indicate QC and the columella initial cells, respectively. D-F, Lugol solution staining of starch in differentiated columella cells after treatment with NAA (D) or NPA (E) and quantification of seedlings showing one or no layer of stem cells (F). Five-d-old seedlings growing under 24-h light conditions were transferred onto medium containing 1 μ M NAA or 1 μ M NPA for 24 h. Black arrows indicate the QC. G, Organization of QC and columella cells. The root was counterstained with propidium iodide. H

and I, Root meristem (H) and quantification of seedlings showing dead cells in the RM (I) after hydroxyurea treatment. Six-d-old seedlings growing under 24-h light conditions were transferred onto medium containing 1mM hydroxyurea for 24 h. The root was counterstained with propidium iodide. Scale bars represent 0.1 mm (A and G), 0.01 mm (B, D and E), and 0.02 mm (H).

Supplemental Figure S4. *tet5* and *tet6* single and double mutant phenotypes in other alleles. A, Rosette and leaf series of 21-d-old seedlings. From left to right were leaf 1 to leaf 8, incisions were made to make the leaves fully expanded when necessary. B, Quantification of the rosette leaf size in A. Means are presented \pm sd (n=8-10). C, Fresh weight of 21-d-old seedlings. Only rosette leaves were used for the experiment. D and E, Primary root growth kinetics (root length). Means are presented \pm sd (n=31-39). Asterisks in all graphs mark significant differences: *p < 0.05, **p < 0.01 and ***p < 0.001.

Supplemental Figure S5. Heat map of *TET* response to different perturbations and *TET8* expression levels after elicitors treatment. A, The perturbations were collected from the dataset in Genevestigator. Orange/yellow and blue colors represent up- and down-regulation, respectively. Color scale represents fold-change between -3.0 and 3.0, the values beyond this range are shown in the same color as -3.0 and 3.0. B, *TET8* expression levels measured by qRT-PCR after 2-h mock or elicitor treatment at the concentration of 1 μ M. *CYP81F2* and *FADLOX* genes were used as positive control (Denoux et al., 2008). Means are presented \pm sd.

Supplemental Table S1. *tet* mutants collected in this study. Only the GT line of *TET13* is a transposon insertion mutant, the rest are T-DNA insertions. SALK and GABI lines are in the Columbia (Col) background and ordered from NASC (http://arabidopsis.info/), FLAG lines are in the Wassilewskija (Ws) background and ordered from INRC (http://publiclines.versailles.inra.fr/), the GT line is in the Landsberg *erecta* (L*er*) background and ordered from CSHL (http://genetrap.cshl.edu/TrHome.html). GABI lines' second insertion information is obtained according to the segregation analysis from the GABI website (http://www.gabi-kat.de/). Plant samples harvested for qRT-PCR in this study were 7-d-old seedlings growing vertically under 24-h light conditions, except for *tet13-2*, for which inflorescences were harvested. pro, promoter. HM, homozygous. HZ, heterozygous. S, sensitive to plant selective antibiotics (SALK and GT: kanamycin 50 mg/L, GABI: sulfadiazin 7.5 mg/L, FLAG: DL-phosphinothricin 50 µM/L.). KO, knock-out. D, down-regulated. U, up-regulated. NC, no change. B, results from Boavida *et al.*, 2013. E, embryo. R, root. C, cotyledon. L, rosette leaf. F, flower. LR, lateral root, LRP, lateral root primordia.

AGI code	Gene	Seed stock	Allele	T-DNA insertion	Pedigree and antibiotic resistance	qRT-PCR result	Gene expression	Phenotype
AT5G46700	TET1	GK-254G01.02	trn2-7	exon 1			E, R, C, L, F.	Altered leaf patterning and symmetry
AT2G19580	TET2	GK-967G02.01	tet2-1	intron 2	HM	KO	C, L, F, meristemoid, stomatal guard cell.	Narrow leaves, reduced leaf area
		SALK_101340C	tet2-2	intron 2	HM. S	D		No phenotype in leaf
AT2C 45 600	TETO	SALK_116766C	tet3-1	intron	HM. S	D	E, R, F, SAM organizing center.	No phenotype in primary root length, flowering time or leaf morphology under normal condition
A13G45600	1E13	GK-026G04.01	tet3-2	intron	HM, 2nd insertion	U		No phenotype in primary root length, flowering time or leaf morphology under normal condition

		FLAG_306C01	tet3-3	exon 1	HM	KO ^B		No phenotype in flowering time or leaf morphology under normal condition	
		FLAG_421H09	tet3-4	exon 1	HM	KO ^B		No phenotype in flowering time or leaf morphology under normal condition	
AT5G60220	TET4	SALK_076971C		prom	HM. S	D	E, R, C, F.	No phenotype in primary root length	
		GK-290A02.01	tet5-1	prom	HM	D	E, R, C, L, F.	No phenotype in seedling	
AT4G23410	TET5	SALK_148216	tet5-2	exon 1	HM	KO		No phenotype in seedling	
		SALK_020009C	tet5-3	exon 2	HM	KO		No phenotype in seedling	
AT3G12090	TET6	SALK_139305	tet6-2	prom	HM	D	R, C, L, F.	No phenotype in seedling	
AT2G23810	TET8	SALK_136039C	tet8-1	exon 1	HM. S	D; KO ^B	E, R, C, L, F.	No phenotype in primary root length	
AT4G30430	TET9	GK-207H01.01	tet9-1	3' UTR	HM	U	R, C, L, F, trichome precusors, trichome.	No trichome morphology phenotype	
AT1G63260	TET10	SALK_120966C		prom	HM	U	E, R, F.	No phenotype in primary root length	
AT2G03840	TET13	SALK_011012C	tet13-1	exon 1	HM	KO ^B	F, QC, LR founder cell, LRP.	Reduced primary root length, root apical meristem size and LR density	
		GT8699	tet13-2	exon 1	HM	U		No root phenotype	
AT5G57810	TET15	GK-513E06.01		exon 2	HM	U	E, R, F.	No phenotype in primary root length	

Supplemental Table S2. TET cis-regulatory element information

See Supplemental Table S2.xlsx file.

FDR, false discovery rate. DH, DNase I hypersensitive site. "SRP" and "GSE" codes refer to Heyndrickx et al., 2014; strong positions

in the matrix are in upper case.

Supplemental Table S3. Primers used in the study.

Primer Name	Sequence (5'-3')	Purpose
pAtTET1attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAATAGTAATTAAGTTATAAATTAGTACACTTG	promoter cloning
pAtTET1attB1R	GGGGACTGCTTTTTTGTACAAACTTGTCTTTTTTGGGAGAGATGAGAG	promoter cloning
pAtTET2attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAGATGCATCTGGAATTTGACG	promoter cloning
pAtTET2attB1R	GGGGACTGCTTTTTGTACAAACTTGTTAAATTTTCTCTCTC	promoter cloning
pAtTET3attB4F	GGGGACAACTTTGTATAGAAAAGTTGGATAGAAATGTGTGTATTCAGTAAGG	promoter cloning
pAtTET3attB1R	GGGGACTGCTTTTTGTACAAACTTGTAGCTTAGGGTTTTGAGGTTTTC	promoter cloning
pAtTET4attB4F	GGGGACAACTTTGTATAGAAAAGTTGGACTACATTTTCCAGGAAAAGCTAATG	promoter cloning
pAtTET4attB1R	GGGGACTGCTTTTTGTACAAACTTGTGGCGATTTTGTTTG	promoter cloning
pAtTET5attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAAGTTTCCTACATATTCTCTG	promoter cloning
pAtTET5attB1R	GGGGACTGCTTTTTGTACAAACTTGTTTTCCTTCTCTCTC	promoter cloning
pAtTET6attB4F	GGGGACAACTTTGTATAGAAAAGTTGGATGCCTCTTCTTTGTTTTTAAATG	promoter cloning
pAtTET6attB1R	GGGGACTGCTTTTTGTACAAACTTGTAGTAGTAATGTTATCAAGAAG	promoter cloning
pAtTET7attB4F	GGGGACAACTTTGTATAGAAAAGTTGGATTCACACAAGAATCTCTCTT	promoter cloning
pAtTET7attB1R	GGGGACTGCTTTTTGTACAAACTTGTCGCTTTTTGTTCCGGCGG	promoter cloning
pAtTET8attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAAAATTTAAAATAGTGCTTCAAAG	promoter cloning
pAtTET8attB1R	GGGGACTGCTTTTTGTACAAACTTGTGGTTTAGATTCAGAGAGAAAG	promoter cloning
pAtTET9attB4F	GGGGACAACTTTGTATAGAAAAGTTGGACCGTGACTATTATTATTATTTTTA	promoter cloning
pAtTET9attB1R	GGGGACTGCTTTTTGTACAAACTTGTGGTGATGATGAAGAAG	promoter cloning
pAtTET10attB4F	GGGGACAACTTTGTATAGAAAAGTTGGATAGAAGAATCAAAGAGAG	promoter cloning
pAtTET10attB1R	GGGGACTGCTTTTTGTACAAACTTGTTTTTCAAGGTTGTTGCTTTTG	promoter cloning
pAtTET11attB4F	GGGGACAACTTTGTATAGAAAAGTTGGATTTCATTTTTCCATATCAAATG	promoter cloning
pAtTET11attB1R	GGGGACTGCTTTTTGTACAAACTTGTTTTTGGAAATTTGCTTTCTCC	promoter cloning
pAtTET12attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAATAGTCATATGGAAATTATTTG	promoter cloning
pAtTET12attB1R	GGGGACTGCTTTTTGTACAAACTTGTTGTTTATCGGCGGTTATTTG	promoter cloning
pAtTET13attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAAAACATTATATTATTTCAAAATA	promoter cloning
pAtTET13attB1R	GGGGACTGCTTTTTTGTACAAACTTGTTATCGTGTAAAGAGAAAGGG	promoter cloning

pAtTET14attB4F	GGGGACAACTTTGTATAGAAAAGTTGGATGCTTCTTTTTCAAAGAGTG	promoter cloning
pAtTET14attB1R	GGGGACTGCTTTTTGTACAAACTTGTTATTGGAGAGAGCTTCAAGGACAG	promoter cloning
pAtTET15attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAGGCTGATCTGATCAATGAATTG	promoter cloning
pAtTET15attB1R	GGGGACTGCTTTTTGTACAAACTTGTGTGAAAGTGAAAGAAA	promoter cloning
pAtTET16attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAATTAAAAATCTTTCCGG	promoter cloning
pAtTET16attB1R	GGGGACTGCTTTTTTGTACAAACTTGTTGTTAAGAACCCTGTTCG	promoter cloning
pAtTET17attB4F	GGGGACAACTTTGTATAGAAAAGTTGGAAGAAAATCTTACCTGCAAATCTCAG	promoter cloning
pAtTET17attB1R	GGGGACTGCTTTTTTGTACAAACTTGTTGTTGTTTTTTGGTATAGACCTG	promoter cloning
qPP2A_F	TAACGTGGCCAAAATGATGC	qRT-PCR
qPP2A_R	GTTCTCCACAACCGCTTGGT	qRT-PCR
qUBC_F	CTGCGACTCAGGGAATCTTCTAA	qRT-PCR
qUBC_R	TTGTGCCATTGAATTGAACCC	qRT-PCR
TET5 qPCR_F	TACTGTGTTGGCTGTTGCG	qRT-PCR
TET5 qPCR_R	GACTGTTCCCATCCAGGTCT	qRT-PCR
TET6 qPCR_F	CAGCTCATCCTTACCATCCA	qRT-PCR
TET6 qPCR_R	CCACCAGTAATAGTCCCAACG	qRT-PCR
TET3 attB1F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGAGAACAAGCAACCATCTCATAG	gene cloning
TET3 attB2R	GGGGACCACTTTGTACAAGAAAGCTGGGTCAAGATGGAAATGACTAGGATGTG	gene cloning
TET13 attB1F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGGCGAGAGATAAAGAAGATC	gene cloning
TET13 attB2R	GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTTCTGACTTTCTCGAAGG	gene cloning
Bar_F	GCCACCGAGGCGGACATG	genotyping
Bar_R	GGGCAGCCCGATGACAGC	genotyping

Supplemental Movie S1. TET3-GFP movement on the plasma membrane.

See Supplemental Movie S1.avi file.

Supplemental Reference

Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in *Arabidopsis* seedlings. Mol Plant 1: 423-445