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Supplementary Figure 1 | Alexander-Anderson prediction for d-d hybridization.

Beginning from dθ=0°, ferromagnetic coupling imposes a hybridization between the two dz2

orbitals localized at the same energy but on neighboring atoms. This produces a splitting into a

bonding- and antibonding-state (green curve). Upon rotation, the atoms eventually become

antiferromagnetically coupled (black curve). The change in the LDOS can be qualitatively

estimated with a cos(dθ) fitting parameter.
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Supplementary Figure 2 | Energy- and spatially-dependent ∆LDOS in skyrmions. (a)

Fe-layer atom-by-atom ab initio results (blue dots) of the total change in LDOS as a function

of θ in a 1.7 nm diameter skyrmion in Pd/Pd/Fe/Ir. ∆LDOS is given relative to the

background-FM and is measured at the Fermi energy while including SOI. These results are

then fitted to f(θ) (solid curve). The f(θ) in (a,b) refers to Supplementary Equation 16, while

the numbers labeling each dot respresent the corresponding atom in the inset extending radially

from the skyrmion core. (b) Again, Fe-layer first-principles results (blue dots) of the atomistic

change in LDOS in Pd/Pd/Fe/Ir and fitted against f(θ) (solid curve), but for a larger 2.2 nm

skyrmion and measured at the resonant energy ER = 0.5 eV. (c) We plot the ∆LDOS as a

function of dθ given by our two-atom Alexander-Anderson model (black curve) to isolate the

non-collinear component of the ∆LDOS. While the main contribution comes from cos(dθ)

(red-dashed, referring to Supplementary Equation 15), a higher-order term is required to

complete the fit (blue-dashed). (d) Rotation parameters as found from the first-principles

calculations, referring to (a) and (b).
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Supplementary Figure 3 | LDOS of a DSk ≈ 2.2 nm skyrmion in Pd/Fe/Ir. (a)

Electronic structure in the magnetically-active Fe-layer resolved into minority (solid) and

majority (dashed) spin-channels. The splitted-structure of the FM-background (green) is

modified due to quasi-AFM interactions when approaching the center of the skyrmion (black).

(b) The alteration of the LDOS in Fe contributes to a strong resonance in vacuum via

hybridization through surface Pd-states. Arbitrary units are used so as to include in the same

plot the nature of the Pd-dz2 surface-state (black-dashed), whose resonance-peak near 0.5 eV

survives in the vacuum. (c) Illustrative legend for (a, b) where the numbered spheres represent

a line extending radially from the skyrmion’s center. The vacuum domains are represented by

empty spheres. FM-Fe, FM-Pd, and FM-Vac represent the unperturbed background

ferromagnet.
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Supplementary Figure 4 | LDOS of a DSk ≈ 1.7 nm skyrmion in Pd/Pd/Fe/Ir. (a)

LDOS in the magnetically-active Fe-layer resolved into minority (solid) and majority (dashed)

spin-channels. The resonance-peak near E ≈ 0.5 eV in the FM-background (green) shifts in

energy when approaching the center of the skyrmion (black). (b) The modification of the

electronic structure in Fe impacts the vacuum LDOS via hybridization through surface

Pd-states. Arbitrary units are used so as to include in the same plot the nature of the Pd-dz2

surface-state (black-dashed), whose features at negative energies survive in the vacuum. (c)

Illustrative legend for (a, b) where the numbered spheres represent a line extending radially

from the skyrmion’s center. The vacuum domains are represented by empty spheres. FM-Fe,

FM-Pd, and FM-Vac represent the unperturbed background ferromagnet.
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Supplementary Figure 5 | LDOS of a DSk ≈ 2.2 nm skyrmion in Pd/Pd/Fe/Ir. (a)

Electronic structure in the magnetically-active Fe-layer resolved into minority (solid) and

majority (dashed) spin-channels. The splitted-structure of the FM-background (green) is

modified due to quasi-AFM interactions when approaching the center of the skyrmion (black).

(b) The alteration of the LDOS in Fe impacts the vacuum structure via hybridization through

surface Pd-states. Arbitrary units are used so as to include in the same plot the nature of the

Pd-dz2 surface-state (black-dashed). (c) Illustrative legend for (a, b) where the numbered

spheres represent a line extending radially from the skyrmion’s center. The vacuum domains are

represented by empty spheres. FM-Fe, FM-Pd, and FM-Vac represent the unperturbed

background ferromagnet.
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Supplementary Figure 6 | Spacially-varying TXMR in 2.2 nm skyrmions. (a) We plot

the TXMR in vacuum for Pd/Fe/Ir beginning in the core of the skyrmion (Vac-0, black) and

then moving radially outwards (Vac-1, red; Vac-2, blue; Vac-3, navy) towards the confining FM

environment. The vacuum resonance near 0.5 eV (see Supplementary Figure 3b) contributes a

strong peak in the TXMR near the same energy. (b) Again but in Pd/Pd/Fe/Ir, where the

peak-signal strength appears near −0.8 eV, as predicted by Supplementary Figure 5b.
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Supplementary Figure 7 | Concept spin-mixing magneto-memory versus DRAM. (a)

2×2 1-T 1-C DRAM unit. In a random access memory, any memory cell can be accessed in

roughly the same time since the WLs and BLs are connected to each bit in parallel. The ideal

minimum packing footprint goes as 4f 2
DRAM/bit in units of area, where fDRAM is the node

generation. (b) Spin-mixing racetracks are not random access but acquire a latency associated

with moving the bits sequentially out of the way to reach the requested address. However, with

realistic skyrmion velocities, the access time could be roughly the same as in DRAM, while

dramatically increasing the packing density.



Z n ∆n MS ML

Pd 46 45.72 −0.28 0.31 0.02

Fe 26 26.18 0.18 2.70 0.10

Ir 77 76.84 −0.16 0.02 −0.01

Supplementary Table 1 | FM state of Pd/Fe/Ir(111). The atomic number (Z), the total

electronic charge (n), and the charge transfer (∆n = n− Z) are given in units of electrons.

The spin-moment (MS) and the orbital-moment (ML) are given in units of µB.

Z n ∆n MS ML

Pd 46 45.77 −0.23 0.08 0.01

Pd 46 45.94 −0.06 0.28 0.02

Fe 26 26.20 0.20 2.63 0.09

Ir 77 76.83 −0.17 0.02 −0.01

Supplementary Table 2 | FM state of Pd/Pd/Fe/Ir(111). The atomic number (Z), the

total electronic charge (n), and the charge transfer (∆n = n− Z) are given in units of

electrons. The spin-moment (MS) and the orbital-moment (ML) are given in units of µB.



Supplementary Note 1 — Charge density, angular momentum of FM thin-films

In Supplementary Table 1, we give information regarding the charge density, charge

transfer, and spin and orbital magnetic moments of the near-surface atomic layers in the

ferromagnetic (FM) state in the single-Pd system (Pd/Fe/Ir).

We see that the spin magnetic moment of Fe is rather large (2.70 µB) and the orbital

moment is not negligible (0.10 µB). Fe induces a sizable spin-moment in Pd of 0.31 µB

which stiffens the isotropic exchange constant for first-nearest neighbors J compared to the

system1,2 having no Pd-overlayer (JPd/Fe/Ir = 14.7 meV vs. JFe/Ir = 5.7 meV). Pd is known

to be a good Stoner system, i.e. it can easily develop a spin magnetic moment.

We also provide a similar table for the double-Pd case (Pd/Pd/Fe/Ir) in Supplementary

Table 2. Interestingly in this case, the spin magnetic moments of the Fe-layer and its nearest-

neighbor Pd-layer did not change greatly compared to the values obtained for Pd/Fe/Ir.

However, the charge transfer of this inner Pd-layer is now much smaller. Since the surface

Pd-layer interacts with Fe indirectly through the inner Pd-layer, the induced spin magnetic

moment is rather small (0.08 µB) on the surface.

Supplementary Note 2 — Angular dependence of the LDOS in nano-skyrmions

We now analytically derive the change in the LDOS at site r, denoted ∆LDOS(r), inside

an axially symmetric skyrmion measured from the origin at r = 0 as a function of energy

and magnetization rotation direction defined by the unit vector of the magnetic moment

ŝ(r) =
(

sin θ(r) cosφ(r), sin θ(r) sinφ(r), cos θ(r)
)
. Examples of rotation parameters θ and

dθ for given skyrmion magnetic moments can be found in Supplementary Figure 2d. When

compared to the ferromagnetic state (with all moments pointing out-of-plane), there are two

contributions to ∆LDOS(r), one due to spin-orbit interaction (SOI) and one due to non-

collinearity (NC): ∆LDOS(r) = ∆LDOSSOI(r) + ∆LDOSNC(r). The contribution from

SOI, the so-called anisotropic magnetoresistance, is well known3−5:

∆LDOSSOI(r, E, θ) ∝ A(r, E) ·
[
1− ŝ2

z(r)
]
, (1)

where A(r, E) is a coefficient depending on the site r and energy E, and ŝz(r) is the z-

component of the spin-moment at site r. Thus upon including SOI, we expect, for example,

a sin2 θ(r) dependence, which contributes to ∆LDOS(r) in second-order.



The contribution from NC, intuitively, comes from the change in the electronic structure

upon rotation of the magnetic moments at consecutive sites (i, j). For homogeneous mag-

netic spirals, a constant deviation in the LDOS from the ferromagnetic (FM) state will be

observed for each atom in the spiral (ignoring SOI). In such a spiral, the smooth rotation

of moments θ(i) → θ(j) = θ(i) + dθ for each atom pair is a symmetry operation commut-

ing with a Hamiltonian having translational invariance, making each atom equivalent, and

the electronic structure the same for each atom in the spiral. However, upon transforming

the spiral’s pitch dθ → dθ′, one would find a different constant deviation of the electronic

structure from the FM-state, such that spirals of different pitch can be identified by their

different magnitudes in ∆LDOSNC .

In skyrmions, however, the rotation of the magnetic moments is not homogeneous, i.e.

dθ is not constant for all nearest-neighbor atom pairs while traversing the skyrmion’s diam-

eter. Thus there will be a site-dependent deviation in the LDOS among the atoms inside

a skyrmion with respect to each other. In what follows, we demonstrate that these devia-

tions are a complex function of the rotation angles, which will depend on the details of the

electronic structure, the energy probed, and even the size of the skyrmions.

To derive ∆LDOSNC(r), we utilize multiple scattering theory: G is the Green function

describing the whole system upon rotation of the magnetic moments, and g is the Green

function describing the initial FM-state. The Green function will be used to evaluate the

change in the LDOS induced by the rotation of the magnetic moments:

∆LDOSNC(r, E) = − 1

π
=
{

TrLS

[
∆Grr(E)

]}
, (2)

as given in a matrix notation where a trace over orbital and spin angular momenta has to be

performed. G can be evaluated via the Dyson equation connecting the non-collinear state

to the ferromagnetic one:

G = g + g∆V G = g + g∆V g + g∆V g∆V g + .... (3)

where ∆V describes the change of the potential upon rotation of the magnetic moments. It

can be expressed as:

∆V (r) = Vdiff(r) (σ · ŝ(r)− σz) , (4)

where σ is the vector of Pauli matrices, and Vdiff is the difference of the two spin components

of the ferromagnetic potential (V ↑0 − V
↓

0 )/2.



We execute a similar expansion for the ferromagnetic initial Green function matrix g:

g = gsum12 + gdiffσz , (5)

where 12 is the 2× 2 identity matrix.

Let us evaluate the first-order and second-order terms contributing to the Dyson equation

(Supplementary Equation 3):

∆Grr =
∑
i

gri∆V igir +
∑
ij

gri∆V igij∆V jgjr + .... (6)

where i and j are sites surrounding site r, or can be the site r itself. Since the trace over

spin has to be performed, we will focus only on the terms that in the end will contribute to

Supplementary Equation 2. We use a pair of useful properties of the Pauli matrices:

TrS

[
σx
]

= TrS

[
σy
]

= TrS

[
σz
]

= 0 , (7)

and

(σ · ŝ)(σ · ŝ′) = ŝ · ŝ′ + i σ · (̂s× ŝ′) , (8)

where i is the imaginary unit. After simplifying, we find the following result:

− 1

π
=
{

TrLS

[
gri∆V igir

]}
= Brir(E) [1− ŝz(i)] (9)

where the coefficient B is given by

Brir =
2

π
=
{

TrL

[
grisumV

i
diffg

ir
diff + gridiffV

i
diffg

ir
sum

]}
. (10)

In other words, the first sum in Supplementary Equation 6 leads to a behavior like (1−cos θi).

The second-order term is given by

− 1

π
=
{

TrLS

[
gri∆V igij∆V jgjr

]}
= Crijr

[
ŝ(i) · ŝ(j)−

(
ŝz(i) + ŝz(j)

)
+ 1
]
, (11)

where the coefficient C is related to the Green functions and Vdiff by:

Crijr = − 2

π
=
{

TrL

[
grisumV

i
diffg

ij
sumV

j
diffg

jr
sum + gridiffV

i
diffg

ij
diffV

j
diffg

jr
sum

+ grisumV
i

diffg
ij
diffV

j
diffg

jr
diff + gridiffV

i
diffg

ij
sumV

j
diffg

jr
diff

]}
. (12)

Thus we obtain a dependence on the dot product of the unit vectors of the magnetic

moments (1− cos dθ cos dφ) and a contribution depending only on the z-components of the

unit vectors of the magnetic moments.



We have thus demonstrated that due to NC, the dependence of the change in the LDOS

with respect to the ferromagnetic state upon rotation of the magnetic moments is not trivial,

and will have terms depending on the dot product between magnetic moments, contrary to

the contribution coming from SOI. The non-collinear contribution is then

∆LDOSNC(r, E, {s}) =∑
i

Brir(E)
(
1− ŝz(i)

)
+
∑
ij

Crijr(E)
[
ŝ(i) · ŝ(j)−

(
ŝz(i) + ŝz(j)

)
+ 1
]
, (13)

where {s} is the spin configuration. Of course, depending on the details of the electronic

structure and strength of perturbation related to the non-collinearity, higher-order terms

can be important and have to be included in Supplementary Equation 13.

Combining ∆LDOSNC and ∆LDOSSOI , in the next section we will fit the change in

the LDOS in terms of trigonometrical functions that depend on the rotation angles of the

magnetic moments. We will apply these fits to our ab initio results as well as to an extended

Alexander-Anderson model used to interpret the variation of the LDOS resonance-splitting

upon rotation of the magnetic moments on neighboring sites.

Supplementary Note 3 — Two-atom extended Alexander-Anderson model

We wish to estimate the change in the LDOS and qualitatively understand the shifting

in energy of resonant d-states in Fe as a function of the rotation angle between adjacent

moments. To this end, we consider for simplification two magnetic atoms (i, j) = (1, 2)

each having one localized orbital dz2 whose single-particle eigenenergy is centered about

E = ε. The initial Hamiltonian describing this model is diagonal in spin-space. We could

also consider an orbital of the type dxz in order to address the coupling induced by SOI

between the dz2 and dxz, as done by Caffrey et al6. However, since the impact of SOI on

the LDOS has already been discussed by others, we focus here on the impact of NC on the

LDOS. We study the ∆LDOS as we vary dθ = θ1 − θ2 between the two atoms. We restrict

the hopping from atom-to-atom to non-spin-flip processes, characterized by the interaction

parameter Vhop.

In terms of Green functions, the following equation gives the LDOS for site 1:

LDOS(1;E, {s}) = − 1

π
=
{

TrS

[
G11(E)

]}
= − 1

π
=
{

TrS [E −H + iΓ]−1

}
11

, (14)



where Γ takes care of the broadening of the states. Instead of solving exactly the previous

equation, one could also use perturbation theory, as described in the previous Supplementary

Note 2, simplifying Supplementary Equation 13 to:

∆LDOSNC(1;E, {s}) = D(E) · (1− cos dθ) , (15)

where D = B121 + C1221.

The energy of the resonant d-states, their width, and splittings come from our first-

principles calculations, e.g. Supplementary Figure 3a (atom Fe-3, navy curve). To obtain

the proper splitting we choose a hopping parameter Vhop ≈ 300-400 meV. We show the

resulting LDOS in Supplementary Figure 1 for five different rotation angles dθ. There

we reproduce the splitting of the resonance-peaks that we have seen in our first-principles

calculations, where d-d hybridization is important, as seen in e.g. Figure 3a of the main text,

or Supplementary Figures 3a, 4a, and 5a of the Supplementary Information.

For the limiting cases of a ferromagnetic state and an antiferromagnetic state, we recover

the expectations of the Alexander-Anderson model7,8. Indeed, when the two atoms are in

the ferromagnetic state (dθ = 0°), the d-d hybridization leads to a splitting of the original

single orbital into bonding- and antibonding-states, seen as broad resonances near 0.5 eV

and 1.25 eV, respectively (Supplementary Figure 1, green curve). The splitting is then given

by 2Vhop.

If the magnetic state is antiferromagnetic (dθ = 180°), there is repulsion between the

minority and majority spin-states leading to a shift given by Vhop/(E
↓
i,dz2 − E

↑
i,dz2). In our

simple model, E↓i,dz2 − E↑i,dz2 is extremely large, thus the shift is not observed in Supple-

mentary Figure 1. It is interesting to see how the splitting between the resonance-peaks

decreases upon rotation of the magnetic moments until they merge to a single resonance

in the antiferromagnetic case (Supplementary Figure 1, black curve). This is in accordance

with the behavior of the LDOS calculated from first-principles for different sized skyrmions

in the two systems Pd/Fe/Ir (main manuscript Figure 3a and Supplementary Figure 3a)

and Pd/Pd/Fe/Ir (Supplementary Figures 4a and 5a).

Next, we wish to estimate the change in the LDOS as a function of rotation as previously

discussed, which leads to the TXMR signal. In Supplementary Figure 2 we plot the change

in LDOS compared against the background-FM for the model along with our ab initio results

in Pd/Pd/Fe/Ir for skyrmions 1.7 nm and 2.2 nm in diameter, respectively. In addition we



show fitted functions against θ and dθ. Interestingly, a good fit to the change in LDOS

shown in Supplementary Figure 2a,b is found by considering

∆LDOS(r;E, {s}) ≈ A(E) · sin2 θ(r) +D(E) ·
[
1− cos θ(r)

]
(16)

instead of strictly employing the terms given by Supplementary Equation 13. This result is

similar to what we found in the simple two-orbital Alexander-Anderson model (Supplemen-

tary Equation 15). In such systems, the contribution from all spin-moment dot products

(see Supplementary Equation 11) behaves on average like cos(θ). This is naturally satisfied

in the two-orbital model.

In Supplementary Figure 2a the change in LDOS at the Fermi energy E = EF = 0 is

depicted. The blue dots represent the total ∆LDOS given from our ab initio calculations for

each atom extending radially from the skyrmion core. The fitting-function f(θ) is Supple-

mentary Equation 16 and shown to be effective in fitting the first-principles data. We note

that the change in the LDOS at the Fermi energy was not large. This is different than the

situations in Supplementary Figure 2b,c where we probed the energy resonances near 0.5

eV, and a larger change in the LDOS was induced. In Supplementary Figure 2b, the fitting

function f(θ) is again Supplementary Equation 16 and shown to be effective in fitting the

ab initio data.

In Supplementary Figure 2c, we plot the ∆LDOS as given by the two-atom Alexander-

Anderson model (black curve) with two fitting-functions. The first-order fit (red-dashed

curve) based on Supplementary Equation 15 is shown to be slightly inaccurate when fitting

the model ∆LDOS. Instead a higher-order term is needed to fit the data (blue-dashed curve).

Thus we learned from the Alexander-Anderson model that depending on the probed energy,

additional terms can be needed to improve the fit. A term proportional to sin2(θ), similar

to the one expected when SOI is included, improves considerably the fit to the non-collinear

contribution to ∆LDOS. For example, near energy resonances, especially if they are sharp,

the perturbative expansion up to second-order from Supplementary Note 2 begins to break

down and higher-order terms are necessary to improve the fitting-functions.



Supplementary Note 4 — LDOS in single-Pd 2.2 nm skyrmions

Let us now turn to the case of a single-Pd system but for a larger skyrmion, DSk ≈

2.2 nm, compared to the one shown in the main manuscript (DSk ≈ 1.7 nm, Figure 3). In

Supplementary Figure 3, we plot the LDOS in a realistic nano-skyrmion in Pd/Fe/Ir(111)

for the magnetically-active Fe-layer (a) and its corresponding vacuum sites (b), but with a

slightly larger energy window [−1.5,+1.5] eV as compared to the main text, where a window

of [−1.0,+1.0] eV was analyzed.

Similar to the case of the smaller skyrmion in the single-Pd system as shown in the

main manuscript (Figure 3a, FM-Fe, green curve), a large resonance peak is observed in the

background-FM Fe-film at 0.5 eV (Supplementary Figure 3a, FM-Fe, green curve). But by

increasing the energy window beyond 1.0 eV, we clearly see a second resonance appearing at

1.25 eV in the nearly-FM atom Fe-3 at the edge of the skyrmion (Supplementary Figure 3a,

Fe-3, navy curve). The appearance of these two resonance peaks in tandem suggests a

strong interaction due to ferromagnetic coupling. In other words, the resonant-peaks at

0.5 eV and 1.25 eV are actually the result of FM-interactions which have split a single

resonance in two. An analogy can be made between these FM-splitted resonance-peaks

and localized degenerate atomic orbitals at different sites which upon interaction split in

energy between bonding- and antibonding-states. The essential physics of this process were

reproduced within an extended Alexander-Anderson model for d-d hybridization between

FM-Fe d-states7,8 in the previous Supplementary Note 3.

The splitting in energy between the two resonance-peaks reduces when the rotation angle

of the magnetic moment increases (Supplementary Figure 3a, Fe-2, blue curve, and Fe-1, red

curve). Finally, in the central spin-flipped atom of the skyrmion (Supplementary Figure 3a,

Fe-0, black curve), the splitting almost disappears as the two resonance-peaks quasi-merge.

This is evidence of antiferromagnetic coupling between the central atom and its nearest-

neighbors7,8. This coupling was also reproduced within our Alexander-Anderson model in

the antiferromagnetic case in the previous Supplementary Note 3.

An important difference with respect to the center of the skyrmion (Supplementary Fig-

ure 3a, Fe-0, black curve) is observed when comparing to the smaller DSk ≈ 1.7 nm case

(main muscript Figure 3a, Fe-0, black curve). In the smaller skyrmion, the quasi-merged

resonance still shows two separate peaks, while in the larger skyrmion there is only a sin-



gle, broad resonance peak. Thus we expect a difference in the TXMR signal in the larger

skyrmion compared to the DSk ≈ 1.7 nm case. In general, there will be a weak size depen-

dence of the spin-mixing signal, which should slowly decay as the diameter of the skyrmion

is increased. In addition, from Supplementary Figure 3b we can see that the vacuum reso-

nance near 0.5 eV in the smaller defect (main manuscript Figure 3b, solid curves) survives

in the larger skyrmion (Supplementary Figure 3b, solid curves), and the TXMR remains

detectible, as seen in Supplementary Figure 6a.

To complete our analysis of the LDOS shown in Supplementary Figure 3, we mention that

with regards to magnifying the strength of the TXMR effect, we need not restrict ourselves

only to the energy window near 0.5 eV, but also look for other energy windows where a large

change in the LDOS is observed as a function of position. We see this in the majority-states

near −1.0 eV (Supplementary Figure 3a, dashed-curves), where the spin-mixing effect is

perhaps even stronger than in the 0.5 eV window composed of minority-states. Indeed, the

TXMR signal is shown to be large for negative bias energies near −1.0 eV in this system

(see main manuscript Figure 4a,b and Supplementary Figure 6a).

Supplementary Note 5 — LDOS of skyrmions in the double-Pd systems

In Supplementary Figure 4, we plot the LDOS in a skyrmion in Pd/Pd/Fe/Ir(111) with

diameterDSk ≈ 1.7 nm for the magnetically-active Fe-layer (a) and its corresponding vacuum

sites (b).

Similar to the case of the smaller skyrmion in the single-Pd system as shown in the main

manuscript (Figure 3a, FM-Fe, green curve), a strong resonance-peak appears near 0.5 eV

composed of minority-spin channel d-states (Supplementary Figure 4a, FM-Fe, green curve).

This resonance-peak shifts in energy upon increased rotation of the magnetic moments

moving towards the center of the skyrmion (Supplementary Figure 4a, Fe-2, blue curve; Fe-

1, red curve; and finally Fe-0, black curve). This observed change in the electronic structure

as a function of position due to the spin-mixing of majority- and minority-states suggests

there will be a TXMR signal in this system as shown previously for the single-Pd system.

Contrary to the single-Pd case, however, the resonance in the hybrid Fe-Pd-spdz2 state

(Pd-dz2 for short) observed in the Pd-overlayer around 0.5 eV vanishes, and instead appears

near −0.5 eV (Supplementary Figure 4b, black-dashed curve). The steepness of this reso-



nance leads to a disturbance in the vacuum-LDOS as a function of position in slightly more

negative energies, near −0.8 eV (Supplementary Figure 4b, solid curves). The character of

the hybrid Pd-dz2 surface-state leads to a flat region in the vacuum-LDOS at positive ener-

gies. We then expect here a smaller TXMR signal in comparison to the single Pd-system

for positive bias voltages. Therefore, in the double-Pd system, we suggest probing negative

bias energies near −0.8 eV, where the spin-mixing effect is more significant, as exemplified

in main manuscript Figure 4d,e.

In Supplementary Figure 5, we plot the LDOS for a larger skyrmion, DSk ≈ 2.2 nm,

in Pd/Pd/Fe/Ir(111). We use a similar labeling convention when decomposing the LDOS.

Interestingly, the d-resonances are broader (Supplementary Figure 5a, solid curves) than for

the smaller skyrmion (Supplementary Figure 4a, solid curves). In the center of the skyrmion,

only one broad d-resonance is observed (Supplementary Figure 5a, Fe-0, black curve). To

reiterate, this indicates that the TXMR signal will be different upon increasing the diameter

of any skyrmion since its electronic structure is modified upon increasing DSk. From the

shape of the vacuum-LDOS (Supplementary Figure 5b, solid curves), the TXMR is nicely

detectable at an energy range around −0.8 eV, as confirmed in Supplementary Figure 6b,

and in the same energy window as the smaller DSk ≈ 1.7 nm Pd/Pd/Fe/Ir(111) case.

From Supplementary Notes 4 and 5 we can conclude that for each skyrmion in a

Pd/Fe/Ir(111) or Pd/Pd/Fe/Ir(111) system, we can select an energy region in which a

large tunneling spin-mixing magnetoresistance (TXMR) will be found. Due to the relevant

energy of detection, one can distinguish skyrmions of different sizes, and discriminate be-

tween skyrmions in Pd-films of different thicknesses. Finally, and perhaps most importantly,

the spatial-variation of the spin-mixing signal means that the internal atomic structure of

each individual skyrmion can be resolved. This means the TXMR can be used to visual-

ize the size, shape, and structure of individaul defects. In devices based on spin-mixing,

this also means that skyrmions can be used as nano-scopic information carriers, where the

TXMR would be used to read the magnetic state-of-bit.

Supplementary Note 6 — TXMR in larger 2.2 nm skyrmions

In Supplementary Figure 6 we plot the TXMR signal spatially-resolved for the 2.2 nm

skyrmions in both systems. The spin-mixing signals retain the same general features and



shapes as in the smaller defects (main manuscript Figure 4a-d). The important peak near

0.5 eV in the Pd/Fe/Ir case remains robust (Supplementary Figure 6a), along with another

strong peak near −1.0 eV. In the case of Pd/Pd/Fe/Ir (Supplementary Figure 6b), the

TXMR has the strongest signal near −0.8 eV, as before. Therefore one could infer from

Supplementary Figure 6 that as the diameter of skyrmionic quasiparticles is increased, the

spin-mixing effect not only survives, but also that specific locations of strong TXMR signals

remain in similar energy windows as in smaller structures.

Supplementary Note 7 — Skyrmion racetracks for dense magnetic memories

Spin-transfer torque magnetic random access memory (STT-MRAM) circuits reliably

read-out bit-states depending on a tunneling magnetoresistance anisotropy of ∼30-50% in

some structures9, with a hope to achieve a magnetoresistance ratio RON/ROFF ≈ 200% by

202210. A TXMR effect as large as ∼20% as we have shown in this work should be enough to

provide adequate read-margin for scaled technologies, and is larger than the < 2% change in

resistance found in widespread commercially-used hard disk read heads based on anisotropic

magnetoresistance alone11. Smaller changes in magnetoresistance just means there should

be a more sensitive read-out circuit. Typically this means a few extra control- and boost-

transistors and does not substantially increase the footprint of the memory, i.e. incorporating

more sensitive read hardware does not degrade packing density considerably.

In potential skyrmion-based devices using CPP-TXMR, a RON/ROFF ≈ 120% could

feasably be well-worth the tradeoff when considering the possible performance gains with

regards to: (1) potentially very low power dissipation due to small currents needed to ma-

nipulate the magnetic textures; (2) fast speed operation due to reduced read/write latencies

associated with nano-scopic size; and (3) large increases in packing density. Let’s consider

points (2) and (3) in greater detail.

One issue with racetrack memories is that they are not random access. In a random access

memory (RAM), any read/write operation can access any bit with roughly the same access

time since the word and bit access lines (WL and BL), which are connected to the set/reset

elements and read elements, are also connected in parallel with the individual memory

cells (see Supplementary Figure 7a). In a racetrack memory, the situation is different. In

practice, if a read/write were requested for an address whose representative bit were at the



end of the racetrack, there would be additional latency associated with moving subsequent

magnetic domains out the way until the requested bit were under the read or write device

(see Supplementary Figure 7b). But does this make racetrack memory intrinsically slower

than RAM?

This is not clear. It depends on the velocities of the skyrmions in the racetrack. Consider

200 nm length racetracks populated with 2 nm in diameter quasiparticles in an array of 100

domains (or 100 bits). With velocity12 vSk = 100 m/s , the furthest bit would acquire an

additional delay in time tdelay

tdelay =
LRT

vSk

≈
(
2nm

Sk

) (
1 Sk

bit

)
(100 bits)

100
(

m
s

) = 2 ns , (17)

a small number compared to the total access time needed to complete the read or write

operation, which in modern dynamic RAM (DRAM) is in the range 20–50 ns13. We do

note, however, that larger in-plane currents will be required to accelerate the quasiparticles

up to a velocity such as vSk = 100 m/s, meaning there will be a tradeoff between tdelay and

power consumption.

Regardless, by incorporating skyrmion racetracks based on spin-mixing, there seems to be

at first glance negligible additional acquired access latency – in fact, we may learn to find in

the end that racetracks can be potentially faster than traditional RAM in certain geometries

and biasing conditions, due to the nano-scopic size of the skyrmion quasiparticles.

With regards to circuit layouts, it is clear that moving to racetracks will provide large

gains in packing density. As an example, let’s compare the workhouse 1-transistor 1-

capacitor (1-T 1-C) DRAM unit to our racetrack-based spin-mixing magneto-memory. Con-

sidering the lithographical node generation, or minimum feature size, f , DRAM memory

minimum packing requirements for a single bit’s footprint in the ideal case goes as surface

area SADRAM ≈ 4f 2 per bit (Supplementary Figure 7a). The current technology node for

DRAM in 2015 is given as fDRAM ≈ 22 nm by the International Technology Roadmap for

Semiconductors (ITRS)10. In a skyrmion racetrack, the potential effective per-bit surface

area could be reduced to possibly SART ≈ f 2
RT per bit, where fRT is the diameter of the

magnetic skyrmions in the racetrack (Supplementary Figure 7b). In our study thus far we

considered realistic skyrmions of order DSk ≈ 2 nm. Comparing against current DRAM



arrays, we define the potential gain in packing density Γ as

Γ ≈ SADRAM

SART

≈ 4f 2
DRAM

f 2
RT

=
(4)(22 nm)2

(2 nm)2
= 500 . (18)

Even including more intricate sense amplifiers for read/write operations in skyrmion race-

tracks, it is clear that incorporation of sub-5 nm skyrmions as data-carriers would substan-

tially increase packing density compared to current state-of-the-art technologies.

Possibly the gains in packing density could even be larger introducing vertical racetracks14,

which are difficult to fabricate thus far.
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