

Supplementary Figure 1 | FSC thermograms of various PCXCs. A) PCXC prepared from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization (Table 1, entry 1); B) PCXC prepared from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization in presence of MeOH (*rac*-1/MeOH = 1/5, molar ratio) (Table 1, entry 2); C) PCXC prepared from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization in presence of MeOH (*rac*-1/MeOH = 1/5, molar ratio) (Table 1, entry 2); C) PCXC prepared from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization in presence of MeOH (*rac*-1/MeOH = 1/5, molar ratio) (Table 1, entry 4). The samples were crystallized isothermally at 180 °C for 2 h.

Supplementary Figure 2 | The carbonyl (left) and methine (right) region of ¹³C NMR spectra of various polycarbonates. A) atactic PCXC; B) stereo-complexes result from (*R*)- and (*S*)-PCXCs with 1:1 mass ratio; (C) PCXC result from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization; (D) PCXC result from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization; (D) PCXC result from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization in presence of MeOH (*rac*-1/MeOH = 1/5, molar ratio); (E) PCXC result from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization in presence of MeOH (*rac*-1/MeOH = 1/50, molar ratio); (F) PCXC result from *rac*-1/PPN-DNP catalyzed CXO/CO₂ copolymerization in presence of MeOH (*rac*-1/MeOH = 1/100, molar ratio).

Supplementary Figure 3 | **Various microstructures of poly(cyclohexene carbonate).** The relationship between the tetrad sequences and the polymer microstructures.

Supplementary Figure 4 | Methylene region of the ¹³C NMR spectra (125 MHz, CDCl₃) of various PCHCs. A) PCHC with 0.96 $P_{\rm m}$ catalyzed by enantiopure dinuclear Co(III) catalyst in toluene;¹ B) PCHC with 0.84 $P_{\rm m}$ catalyzed by enantiopure dinuclear Co(III) catalyst;¹ C) PCHC with 0.82 $P_{\rm m}$ catalyzed by catalyst *racemic*-1 (Table 1, entry 7).

Supplementary Figure 5 | ¹³C CPMAS NMR spectra of various PCHCs. A) amorphous-PCHC; B) (S)-enantiopure-PCHC with 0.84 $P_{\rm m}$; C) Multiblock-PCHC; D) Stereocomplexed-PCHC.

	Various PCXCs	T_1 (s)				
Entry		C-0	СН		СЦ	СЦ
		C-0	1	2	CH_2	CH ₂
1	Amorphous-PCHC	48		35	23	21
2	PCHC with 0.84 $P_{\rm m}$	44		32	22	20
3	Multiblock-PCHC	56		39	26	24
4	Stereocomplexed-PCHC	271	250	195	146	110

Supplementary Table 1 | ¹³C T_1 relaxation times for solid various PCHCs at ambient temperature^{*a*}

^aMeasured with CPMAS NMR using the saturation-recovery based sequence .

Supplementary Methods.

Procedures for the copolymerization of CO₂ with *meso-epoxides:* In a predried 20 mL autoclave equipped with a magnetic stirrer, catalyst *rac-***1** (0.030 mmol, 1 equiv), cocatalyst (0.030 mmol, 1 equiv) and *meso-epoxide* (30 mmol, 1000 equiv) were dissolved in toluene in an argon atmosphere. After CO₂ was introduced, the reaction mixture was stirred at a desired temperature for an appropriate time. Then CO₂ was released, a small amount of the resultant mixture was removed from the autoclave for ¹H NMR analysis to quantitatively give the selectivity of polycarbonate to cyclic carbonate, as well as carbonate linkages. The crude polymer was dissolved in a 10 mL CHCl₃/MeOH (5/1, v/v) mixture with 0.5% HCl solution and precipitated from methanol. This process was repeated 3-5 times to completely remove the catalyst, and white polymer was obtained by vacuum drying.

NMR experiments. ¹H and ¹³C NMR spectra were recorded on Varian INOVA-400 MHz type (¹H, 400 MHz), and a Bruker Avance 500 MHz type (¹³C, 125 MHz) spectrometer, respectively. Their peak frequencies were referenced *versus* an internal standard (TMS) shifts at 0 ppm for ¹H NMR and against the solvent, chloroform-*d* at 77.0 ppm for ¹³C NMR, respectively.

Mass spectrometry. A Micromass Q-Tof (Micromass, Wythenshawe, UK) mass spectrometer equipped with an orthogonal electrospray source (Z-spray) used for the cobalt complexes in positive ion mode (Capillary = 2000 V, Sample cone = 20 V).

Gel permeation chromatography (GPC). Molecular weights and molecular weight distributions of polymers were determined with a PL-GPC 220 high temperature chromatograph (Polymer Laboratories Ltd.) equipped with the HP 1100 series pump from Agilent Technologies. The GPC columns were eluted with tetrahydrofuran at 35 °C at 1.00 mL/min. The sample concentration was about 0.1%, and the injection volume was 100 μ L. The curve was calibrated using monodisperse polystyrene standards covering the molecular weight rage from 580 to 460000 Da.

Differential scanning calorimetry (DSC) was carried out with a NETZSCH DSC 206 thermal analyzer. First cycle: from 20 °C to 180 °C at a heating rate of 10 K/min, and from 180 to 20 °C at a cooling rate of 10 K/min. Second cycle: from 20 to 280 °C at a heating rate of 10 K/min. For all DSC analysis, the result was given based on second cycle.

Wide angle X-ray diffraction (WAXD). Powder X-ray diffraction data were collected on a EMPYREAN diffractometer with Cu KR radiation ($\lambda = 1.54056$ Å) over the 2 θ range of 5-80° with a scan speed of 0.128548/s and a step size of 0.0083556° at room temperature. The samples were

crystallized isothermally at designed temperature for 2 h and measured at room temperature in air atmosphere.

Synthesis of catalyst. The di-nuclear cobalt catalyst *racemic*-1 were prepared according to the literature method.¹

Synthesis of cocatalyst. The cocatalyst PPN-DNP (PPN =bis(triphenylphosphine)iminium, DNP =

2, 4-dinitrophenoxide)² and PPN-PF₆ (PPN =bis(triphenylphosphine)iminium, PF_6 = hexafluorophosphate)³ were prepared according to the literaturemethod.

Supplementary References.

- Liu, Y., Ren, W. M., Liu, J. & Lu, X. B. Asymmetric copolymerization of CO₂ with *meso*-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity. *Angew. Chem. Int. Ed.* 52, 11594–11598 (2013).
- Wu, G. P., Wei, S. H., Lu, X. B., Ren, W. M. & Darensbourg, D. J. Highly selective synthesis of CO₂ copolymer from styrene oxide. *Macromolecules* 43, 9202–9204 (2010).
- 3 Liu, Y. *et al.* Mechanistic understanding of dinuclear cobalt(III) complex mediated highly enantioselective copolymerization of *meso*-epoxides with CO₂. *Macromolecules* **47**, 7775–7788 (2014).