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Supplementary Figure 1  
 
Point spread functions for fluorophores with fixed orientations imaged near the 
focus.  The top left panel shows the theoretical intensity distribution from an 
image of a fluorophore that is fixed in orientation during imaging with 
azimuthal and polar angles of 225 and 0 degrees, respectively, and imaged at 
a distance of -100 nm from the focal plane (Methods). The fluorophore’s 
position coincides with the center of the pixel array.  We used an emission 
wavelength of 570 nm and 32 nm square pixels throughout, while the 
remaining parameters are set identical to the ones used in the analysis of the 
experimental dsDNA data (Methods).  Other panels show the intensity 
distribution for fluorophores oriented at different polar angles (rows) and 
imaged at different focal depths (columns).  The intensity scale is identical in 
all panels and given by the color bar at the bottom.   
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Supplementary Figure 2  
 
Experimental setup. Also see Methods. We used a commercial TIRF scope 
(Nikon, Eclipse TE2000-PSF) with an oil immersion TIRF objective lens 
(Nikon, Apo-TIRF 100x, NA 1.49).  The Perfect Focus System (PFS) was 
used throughout to minimize the focus drift.  The sample slide was firmly 
mounted on stages (XYZ motorized and Z piezo stage).  561 nm and 643 nm 
lasers were coupled and their power was modulated by the Acousto-Optic 
Tunable Filters (AOTF). The laser beams were focused at the back-focal 
plane of the objective lens and the angle was controlled by the TIRF 
illuminator for TIRF excitation of the sample with low background noise.  The 
fluorescence emission was filtered by an emission filter (EM1), expanded by a 
2.5x relay lens for increased magnification, and split in the Dual-view (Cairn 
Research, Optosplit II) where the different emission spectra were split on a 
dichroic mirror (DM2) and each signal was further filtered by emission filters 
(EM2 and EM3).  Finally, they were imaged on different area of the EMCCD 
camera (Andor, iXON plus).  Bright light from the lamp (Nikon, DiaLamp) was 
transmitted through the objective lens, split in the dual-view, and imaged on 
the EMCCD camera whose high-contrast bright image was used to correct for 
emission path drift at the time of data analysis. 
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Supplementary Figure 3 
 
Localization of fluorescent beads used as fiducial markers in order to map 
between the two channels in the experiment.  (a,b) TIRF microscopy images 
of, respectively, orange and dark red emissions of the same multi-colored 
fluorescent bead (Methods).  (c,d) Theoretical images with parameter values 
obtained speedily with GME, i.e., least squares fitting with equal statistical 
weights for all pixel-signals in the fit, in conjunction with a 2D Gaussian-plus-
a-constant PSF1.  (e,f) Rescaled residuals.  Each pixel shows the difference 
between measured and expected pixel signal values in units of its theoretical 
r.m.s. deviation as given by the color bar.  The theoretical r.m.s. deviation was 
obtained using Eq. 6 in Ref. 1 with the parameters fitted in c and d.  (g,h) 
Measured signal values compared to expected values.  We binned the 
expected signals and their associated pixels with experimental values 
according to the expected values.  For each bin, the mean experimental 
signal is plotted against the expected signal with an error bar indicating the 
theoretical s.e.m.  Data points shown should scatter about the straight line 
through the origin with unit slope, each in a Gaussian manner with s.d. equal 
to the shown error bar.  (i,j) Histograms of rescaled residuals.  For sufficiently 
large expected pixel signals, theory predicts a normal distribution with zero 
mean and unit s.d. (solid line) for the fluctuations in e as well as in f. 
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Supplementary Figure 4 
 
Time series of fluctuations in the vector distance in the image plane between 
two spectrally separated images of the same fluorescent bead. (a) Using 
GME, we localized the center of the image of a single fluorescent bead in both 
channels for each frame in a time lapse movie consisting of 90 frames 
(Methods, Supplementary Fig. 3).  For each frame, we computed the 
separation between such images along the x-axis and subtracted its time-
averaged value.  The resulting residuals are shown here (connected black 
dots).  (b) Same as a for the separation along the y-axis.  (c) Histogram of the 
residuals from a overlaid with a normal distribution centered on the origin and 
with s.d. equal to the theoretical s.d. for the estimator of separations (solid 
line), computed using parameters from the analysis in Supplementary Fig. 3.  
The distribution of residuals of measured separations is consistent with the 
theoretical expectation with p = 0.12.  This p-value was found using Pearson’s 
chi-squared test for the distribution.  (d) Same as c for the residuals from b.  
Here we found consistency with p = 0.16.  We used a bead as fiducial marker 
only if the fluctuations in the vector separation between its dark red and 
orange images were consistent with photon shot noise with p > 0.015 for both 
coordinates. 
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Supplementary Figure 5 
 
Fluctuations in the vector separation between a bead’s images in the two 
channels has negligible autocovariance in time.  (a) From the residuals of 
separations between a bead’s orange and dark red images along the x-axis 
from Supplementary Figure 4a, we calculated the autocovariance (connected 
black dots).  Its value at zero lag is the variance of the residuals.  (b) Same as 
a for the separations along the y-axis from Supplementary Figure 4b.  (c) The 
power spectral values of the residuals in a (black dots).  Uncorrelated noise 
gives rise to a uniform (“white”) power spectrum with value equal to the 
variance of the signal (dashed line).  Block averages of the power spectral 
values (red points) are consistent with such white noise.  (d) Same as c for 
the input data from b.  (e) Histogram of power spectral values from c.  These 
values are independent and identically exponentially distributed with mean 
value equal to the variance of residues (solid line), if they originate in white 
noise with finite variance (Methods).  The measured distribution is consistent 
with this theoretical expectation with p = 0.95.  This p-value was found using 
Pearson’s chi-squared test for the distribution.  Consequently, due to the 
absence of temporal correlations, the time-averaged separation has s.e.m. = 
s.d./√N.  Here N = 90 is the number of frames in the movie and s.d. = 5.1 nm, 
so s.e.m. = 0.5 nm.  Thus our estimates for the vector difference between the 
two images of a bead have sub-nanometer stochastic errors.  (f) Same as e 
for the power spectral values in d.  Here we found p = 0.55 and s.e.m. = 0.6 
nm.   
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Supplementary Figure 6  
 
Map of fiducials between channels.  (a) We estimated the time-averaged 
positions of 5622 beads in Channel 1 as well as in Channel 2 as described in 
Supplementary Figs. 3-5.  For each bead, its average position in the field of 
view is plotted (colored points), and the point’s color indicates the extent to 
which the difference in x-coordinate between the point’s coordinates in the 
two channels differs from the population average of the same quantity.  The 
effective pixel size was 32 nm.  (b) Same as a for the difference in y-
coordinates.  Panels a and b show that the map between channels measured 
experimentally with fiducial beads is not a constant vector translation when 
measured with the precision we need: On top of the constant vector 
translation we see smooth spatial variations, as expected from optics, and 
superposed on that, a speckled pattern with a characteristic length scale 
comparable to the diffraction limit (Supplementary Fig. 7).   
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Supplementary Figure 7 
 
Analysis of the experimentally recorded map between channels reveals a 
speckled pattern that makes a global map between channels impossible.  The 
map between channels that we observed with fiducials, is not just a constant 
translation vector, but differs from that in a manner that depends on location in 
the image plane (Supplementary Fig. 6).  Much of these aberrations we could 
explain as (similar to) spherical and chromatic aberrations: They are radial 
displacements relatively to the optical axis and depend only on the distance 
from it, and hence much can be captured by a calibrated global map between 
channels.  This figure shows, however, that too much of the actual map 
remains undescribed by a global map.  (a) We estimated the position of the 
optical axis (red point) in the field-of-view (FOV) as the position that best 
explains the observed map between channels as a fixed displacement plus a 
radial aberration.  This was done by minimizing local deviations from this 
explanation, the sum of all squared angles between observed aberrations 
(Supplementary Fig. 6) and the radial direction.  The result defines a 
translation vector, the vector that maps the optical axis in one channel to the 
optical axis in the other channel, plus observed aberrations from this constant 
map, shown as arrows at the position of each bead.  (The effective pixel size 
was 32 nm.)  (b) Blow-up of the area in a enclosed by a red circle there.  In 
this vicinity of the optical axis, these arrows all point towards the optical axis 
(red point).  We grouped all translation vectors in this area into bins according 
to their distance to the optical axis.  (c) For each such bin we calculated the 
mean amplitude of the translation vectors (black dots) and plotted them as a 
function of the bin’s distance to the optical axis.  Error bars represent s.e.m.  
A second-degree polynomial fits the data (solid line).  (d) For each bin, we 
also calculated the mean of angles between aberrations and the radial 
direction.  Error bars are s.e.m.  The values scatter around zero, as they 
would for perfect optics.  (e) From each aberration in the FOV, we subtracted 
a radial vector with magnitude given by the fitted curve in b.  If this curve 
gives a complete description of observed aberrations, the resulting vector 
residuals (black arrows) should represent noise, i.e., have uncorrelated 
random orientations and amplitudes.  (f) Blow-up of the area in e enclosed by 
a red circle there.  Notice that the arrows, however, are correlated on short 
length scales.  (g) The x-components of the resulting vector residuals from e 
(colored points).  The value of each residual is given by the color bar at the 
bottom of the figure.  The optical axis is indicated (black point).  (h) Blow-up of 
the area in g enclosed by a black circle there and corresponding to the area in 
f.  Even in this area around the optical axis, which was used to obtain the 
model, a speckled pattern of correlations between residuals is revealed.  They 
do not represent noise, but presumably imperfections in the optics.  These 
speckles have a characteristic size comparable to the diffraction limit, which 
suggests imperfections on a scale smaller than that.  The residuals are too 
large in magnitude to be ignored because of the resolution required for the 
single-molecule measurements done in the present work. Thus, a global map 
between channels is not possible.  Instead we calibrated local maps 
(Supplementary Fig. 8).  (i) Same as g for the y-components of the resulting 
vector residuals from e.  (j) Same as h for the resulting vector residuals from i. 



 9 

Supplementary Figure 8 
 
Properties of the local map calibration using fluorescent beads as fiducial 
markers.  (a) Ability of locally calibrated maps to capture the spatial variation 
in the global map.  We used a locally determined low-degree polynomial to 
map each coordinate of a position of interest (POI) to its corresponding 
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position in the other channel (Methods).  We used a circular region around the 
POI and calibrated the map using all accepted beads in this area as fiducials.  
The polynomial coefficients of the local map were determined with a linear 
least-squares fit.  We divided the imaging region (Supplementary Fig. 6) into 
mapping areas of different sizes.  For each size of mapping area, we 
determined, respectively, a first-degree (red) and second-degree (blue) 
polynomial in the x- (filled circles) and y-coordinate (open circles).  We 
calculated the variance of the residuals between the mapped and the 
measured positions of the beads in the target channel, where we accounted 
for the fit of the map and the number of beads included in the fit.  Because the 
number of beads in an area exceeds the degrees of freedom in the 
polynomial, the quality of a fitted map is quantified by this variance, and this 
value vanishes only when all bead coordinates from one channel is mapped 
perfectly onto their measured coordinates in the other channel.  Smaller 
mapping areas lead to lower variance, because the polynomial here is a 
better approximation of the actual spatial variation in the map.  However, 
below radii of ~20 pixels for the second degree polynomial, the residual 
variance is constant, indicating a contribution to the variance, which is 
independent of the area size, most likely the fact that the two dyes have 
different centers in our fiducial beads.  Notice that the second-degree 
polynomial consistently outperforms the first-degree polynomial for radii larger 
than ~10 pixels.  The effective pixel size was 32 nm.  (b) Mapping error for the 
POI.  For each map in a, we calculated the mapping error for the POI by 
propagating the variances for each bead as estimated in a.  To this end we 
assumed that the residuals of the beads in a map are spatially uncorrelated.  
This is the case only when a map captures essentially all spatial variation, 
ensured by using a sufficiently small mapping area (the plateau in a).  On the 
other hand, the mapping error decreases with the number of beads included 
in the map.  Therefore, the optimal mapping area balances these two effects.  
We used a radius of 22 pixels with the second-degree polynomial, which 
amounts to a mapping error of ~2 nm.  We proceed to show that this area is 
sufficiently small to ensure uncorrelated residuals.  (c) Autocovariance in 
space of the mapping residuals for a circular mapping area of radius of 22 
pixels.  To validate that the map captures essentially all spatial variation, we 
calculated the autocovariance function of the residuals by binning beads by 
their Euclidean distance to each other.  We bias-corrected the autocovariance 
to take into account the polynomial fitting and the number of beads 
contributing to a map.  Then we averaged the autocovariance over all maps.  
The autocovariance of the first-degree polynomial (connected red circles) 
shows positive correlation for short distances, which demonstrates that the 
first-degree polynomial is incapable of capturing all spatial variation.  The 
autocovariance of the second-degree polynomial (connected blue circles) is 
essentially equal to a delta function, hence shows no spatial correlations.  
This demonstrates the validity of the calculated mapping error in b for this size 
of mapping area using a second-degree polynomial. 
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Supplementary Figure 9 
 
Detection and correction of drift in the optical components in the emission 
path of the microscope.  To quantify such drift with nanometer precision, we 
shone bright light through the microscope.  This revealed the imaging 
windows clearly for both channels.  (a) We measured the position and 
orientation of each of these imaging windows by fitting its light distribution with 
a rectangular area in which diffraction at the edges is accounted for (Methods).  
To this end, we fitted the rectangle’s (blue) position coordinates of its edges 
(x1,y1,x2,y2) and its rotation (!) with respect to the camera pixel array (white 
rectangle), along with the intensity inside and outside the imaging window.  
The standard rotation matrix in two dimensions !(!) rotates the rectangle into 
position.  Here, rotation with respect to the white reference rectangle is 
exaggerated for clarity.  (b) Fits of the imaging windows for the two channels 
(blue and red rectangles) for a single image are shown.  We repeated this for 
ten consecutive images.  Then we compared the fitted parameters for such 
measurements done immediately after the collection of dsDNA data and the 
map calibration.  Typically, we found no significant change in the rotation of 
the imaging windows (Student’s t-test), between these time points.  The edge 
coordinate differences between two experiments were computed for each of 
the four position coordinates.  In all cases, the change in distances for the 
right and left edges, respectively top and bottom edges, were consistent with 
each other (Student’s t-test), which demonstrates that the entire window 
moves without changing its shape.  Consequently, we averaged the distances 
moved by the right and left edges, respectively top and bottom edges, to 
quantify the drift of the imaging windows along each of the two axes.  
Typically, such distances were estimated with an s.e.m. of ~0.5 nm.  We 
corrected for drift (Methods), if the estimated edge distances exceeded twice 
their s.e.m.  In this way, we detected no significant drift in the emission path 
between the time points of 20 bp dsDNA data collection and the mapping 
calibration.  Between the time points of 30 bp dsDNA data collection and the 
mapping calibration, however, we detected drift magnitudes of 1.9 ± 0.6 nm 
and 1.6 ± 0.6 nm, respectively, for the x- and y-coordinates of Channel 1 and 
1.3 ± 0.3 nm and 1.3 ± 0.3 nm, respectively, for the x- and y-coordinates of 
Channel 2.    
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Supplementary Figure 10 
 
Accuracy of diPOLE used with the analytical approximation to the true PSF.  
We simulated images of isolated, fixed fluorophores for a range of polar 
angles and distances from focus using the exact expression for the true PSF.  
Without loss of generality, the azimuthal angle was set to zero.  We used 
physical parameters and EMCCD parameters identical to those of our 
experiment (Methods, Supplementary Fig. 15).  For each image, we first 
generated a Poisson random variable for each pixel in a pixel array of 14 x 14 
square pixels, each with a width of 32 nm.  This modeled the photon shot 
noise using a total expected photon number of 10,000 and a background 
density of five expected photons per pixel.  For each pixel, an output value 
from the EMCCD signal distribution was simulated using the Erlang 
distribution, readout noise was subsequently added as a Gaussian random 
variable, and the resulting signal was offset.  For each value of the polar angle 
and for defocus of 0 nm (black), -30 nm (blue), and -65 nm (red), 500 images 
were generated.  We fitted these images with diPOLE using the analytical 
approximation for the PSF.  To demonstrate the importance of the defocus as 
a fitting parameter, we also fitted the images for defocus of -65 nm using 
diPOLE where we (incorrectly) assumed perfect focus (gray).  (a) Mean 
estimates for the dipole’s x-coordinate relative to its true value.  The error bars 
indicate s.e.m. calculated from the estimated values.  The mean estimated 
values with the defocus as a fitting parameter are within a nanometer of the 
true value (solid line), while the assumption of perfect focus is associated with 
more than 10 nm inaccuracies for intermediate polar angles.  (b) Same as a 
for the dipole’s y-coordinate.  The estimates of this coordinate are unbiased, 
due to the choice of azimuthal angle of the probe.  (c) Same as a for the 
azimuthal angle.  The estimates are essentially unbiased.  (d) Same as a for 
the polar angle.  The average estimates with the defocus as a fitting 
parameter are all within 3 degrees of the true value for the polar angle.  These 
small biases may be avoided by using the full evaluation of the exact PSF, but 
at the cost of speed. For most purposes, such small biases are immaterial, 
however.   
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Supplementary Figure 11 
  
Precision of diPOLE used with the analytical approximation to the true PSF.  
From the simulated images described above (Supplementary Fig. 10), we 
calculated the sample variance of estimates.  (a) The sample variance of 
estimated x-coordinates of dipoles in units of the theoretically predicted 
variance given by the inverse Fisher information matrix for photon shot noise, 
multiplied by two to account for excess noise (Ref. 1).  Error bars indicate the 
error associated with the estimate of the sample variance.  The variances 
agree with their theoretically predicted values, which represents the lowest 
possible variance for an estimator (solid line).  (b) Same as a for the 
estimated y-coordinates of dipoles. (c)  Same as a for the estimated azimuthal 
angles.  Variances achieve the information limit for most polar angles.  At low 
polar angles, however, we expect excess variance, because the azimuthal 
angle becomes ill defined there.  (d) Same as a for the estimates of the polar 
angle.  Here the estimates typically have variances that are larger than the 
theoretical lower bound, but they remain within a factor of two of it.  This 
finding is consistent with the estimates of the angle between the two probes: 
they scatter slightly more than the theoretical lower limit on their variance. 
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Supplementary Figure 12 
 
Geometric model of dsDNA.  In our sample (Methods, Fig. 1a and 
Supplementary Table 1), each fluorophore (Cy3 and Cy5) is covalently 
attached to the sugar backbone at two sites, with known separation between 
them, 20 bp or 30 bp.  This integer multiple of 10 bp, one helix turn, ensures 
that the fluorophore dipoles have approximately identical polar angles.  We 
modeled the B-form dsDNA as a simple double helix with a pitch of 3.4 nm 
distributed with 1.2 nm and 2.2 nm on the minor and major grooves, 
respectably.  Simulations2 have shown that the Cy3 and Cy5, both of which 
replace part of the sugar backbone and bases (Fig. 1a), may interact with the 
dsDNA located either in a minor or a major groove due to, presumably, 
hydrophobic effects.  So we assumed that each fluorophore hinges with a 
radius of 1 nm and in a manner that keeps it parallel to the piece of helix 
backbone it replaces.  This makes the relative angle between the two dipoles 
constant and equal to 74 degrees.  We also assumed that the dsDNA was 
approximately parallel to the coverslip surface.  Due to the possible 
minor/major-groove interactions of the probes with the dsDNA, the distances 
between them may vary with ±4 bp (dotted lines, Fig. 4a), corresponding to 
both probes interacting with the closest minor groove, respectively both dyes 
interacting with the closest major groove.  The distance between the probes 
changes only negligibly for combinations of major/minor groove interactions.  
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Supplementary Figure 13 
 
Fluorophore orientations suggest two possible orientations for each dsDNA. 
Given the orientations in space of the two emission dipoles, we still do not 
know the orientation in space of our dsDNA construct: Two are possible.  An 
emission dipole moment (Cy3, blue line segments; Cy5, red line segments) 
determines a direction in space only modulo π, i.e., a direction and its 
opposite direction are the same thing when describing a dipole’s orientation.  
Consequently, knowledge of the polar and azimuthal angles (modulo π) for 
both probes is not sufficient to determine the orientation in space of the 
dsDNA construct they are part of.  Thus, two different orientations of this 
construct have the same probe angles, as illustrated here with the probe 
angles estimated for the molecule discussed in Fig. 3.  Here, the two strands 
of each dsDNA are shown in black and gray, respectively, and the two 
orientations of the DNA are shown with full and dashed lines, respectively.  
(The probes are separated by 30 bp, and only 50 bp of the full construct is 
shown to avoid clutter.)  These two different orientations of the construct have 
different angles with the optical axis, however, so the vector differences in 
position between the probes projected onto the xy-plane are different.  We 
compare these to the measured vector differences (Fig. 3e,f), and this 
comparison uniquely favors one solution (black arrows in Fig. 3e,f; dsDNA 
with full lines here) over the other (white arrows in Fig. 3e,f; dsDNA with 
dashed lines here).   
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Supplementary Figure 14 
 
Comparison of two possible orientations for each dsDNA molecule.  (a) We 
determined two possible 3D orientations of each dsDNA molecule based on 
estimated fluorophore orientations (Supplementary Fig. 13).  Each of the two 
possible orientations predicts a value for the vector separation of the probes 
in the xy-plane (Fig. 3, Supplementary Fig. 13).  We subtracted this value 
from the measured time-averaged vector separation determined from the 
fluorophore positions.  We then calculated the magnitude of this vector in 
units of its theoretical r.m.s. deviation, assuming shot noise on the measured 
positions and mapping error as the only sources of variation.  (Thus, in this 
rescaling, we tentatively ignored contributions from possible minor/major 
groove interactions and shot noise on measured probe orientations.)  For 
each candidate orientation, this quantified the agreement of the time-
averaged vector separations with that orientation.  The most probable 
orientation (black circles) thus has a shorter distance to the prediction than 
the least probable orientation (open circles).  Of the 20 molecules analyzed in 
this paper, we here included 17 that yielded at least one candidate orientation 
within 4 units of the theoretical r.m.s. deviation of the prediction.  For the 
remaining three, presumably, dye/surface and dye/dsDNA interactions 
impede agreement between predicted dsDNA orientations and measured 
time-averaged vector separations.  Notice that this did not compromise 
distance measurements (Fig. 4a).  (b) If all variation between time-averaged 
vector separations and the predictions from the most probable orientation is 
accounted for, the rescaled distances follow a standard normal distribution on 
the radial axis (solid line).  The mean!±!s.d. (full ±!dashed lines) is indicated.  
The agreement with data (black circles in a) is reasonable.  (c) To quantify the 
statistical uncertainty in selecting one orientation over another, we calculated 
the odds (black circles) in favor of the most probable orientation.  This was 
calculated as (probability to find a rescaled distance to the most probable 
prediction, which is equal to or worse than the observed, by chance)/ 
(probability to find a rescaled distance to the least probable prediction, which 
is equal to or worse than the observed, by chance).  The probabilities were 
calculated by integration of the theoretical probability density in b. 
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Supplementary Figure 15  
 
Calibration of the EMCCD camera.  (a) The output signals from an area of 
20x20 pixels of uniform background imaged for 30 frames were combined into 
a histogram.  The uniform and constant illumination across all pixels ensured 
that all pixels’ output signals were drawn from the same probability distribution.   
Non-uniform response statistics for the pixels in EMCCD cameras has 
previously been reported (Ref. 3), but the present camera (Methods) showed 
a perfectly uniform response, presumably, due to improvements in designs of 
EMCCD cameras. Using MLE, we fitted the parameters of the full distribution 
of EMCCD signal output (solid line) to our calibration set of output signals (Ref. 
1).  We assumed that the constant offset of the camera was Soffset&= 300, as 
previously determined from a dark image.  Doing this, we determined the gain 
of the camera, G = 111.  It is the factor that converts between signal output 
and photon numbers after subtraction of Soffset.  The same fit also determined 
the width of the Gaussian distribution !readout noise !!"#$% = 13 , and the 
expected number of photons incident on each pixel in one frame, ! = 1.  (b) 
Same as a using a different area of the EMCCD camera with higher constant 
background.  Here, we found parameter values of G = 114, !!"#$% = 14, and 
! = 6.  The results for the gain from a and b, respectively, are within a few 
percent of each other and we proceeded to use their average value to convert 
between signal output and photon numbers throughout the paper. 
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Supplementary Table 1 
 
Sequence of the dsDNA samples 
 
Sample 1:  
 
20 bp separation (total length 60 bp) 
 
5' - CCGTTGCGTT CGCTGGCGC/iCy3/ CCCGGCGCAT GTTACCGCGA 
CGGGCCAGGT ACACTAAGGG - 3' 
 
5' - CCCTTAGTGT ACCTGGCCCG /iCy5/CGCGGTAAC ATGCGCCGGG 
AGCGCCAGCG AACGCAACGG - 3' 
 
Sample 2:  
 
30 bp separation (total length 90 bp) 
 
5' - CCGTTGCGTT GGAGGGCTCC CGCTGGCGC/iCy3/ CCCGGCGCAT 
CCGAGTAGTC GTTACCGCGA CGGGCCAGGT GTTGAACGGG 
ACACTAAGGG - 3' 
 
5' - CCCTTAGTGT CCCGTTCAAC ACCTGGCCCG /iCy5/CGCGGTAAC 
GACTACTCGG ATGCGCCGGG AGCGCCAGCG GGAGCCCTCC 
AACGCAACGG - 3' 
 
 
 
 
 
 
 
 
 
 
  



Supplementary Note 1

Probability distribution of relative angles between emission dipoles

The “normal” distribution of errors on spherical coordinates is the solution to
the diffusion equation on the surface of the sphere with initial condition that
all probability is located in a single point. Like the normalized 2D Gaussian,
this distribution on the sphere has three parameters: The two spherical co-
ordinates of its center, plus its variance. We find this pdf here by solving the
diffusion equation.

One may think of the diffusing entity as the orientation of a dipole. We are
particularly interested in the error on the angle between two such dipoles,
both of which come with errors on their orientation, i.e., both of which have a
normal probability distribution on the sphere. With no loss of generality, we
can find the probability distribution of angles between two such dipoles by
keeping one of them fixed and letting the other one diffuse with correspond-
ingly higher diffusion coefficient.

With no loss of generality, we can let the fixed dipole define the North
Pole of the sphere. Then the angle between the two dipoles is the polar
angle of the other, diffusing dipole, and its distribution at any time is found
by solving the diffusion equation for the other dipole and integrating over
the azimuth of the solution. With no loss of generality, we can also define
this azimuth such that the initial orientation of the diffusing dipole has zero
azimuth. Specifically, let the orientation of a dipole be given as a point ⌦ on
the unit sphere.

⌦ = (✓,�) =

0

@
cos� sin ✓
sin� sin ✓

cos ✓

1

A (1)

in spherical and Cartesian coordinates, respectively. The orientation of the
fixed dipole defining the North Pole has coordinates ⌦1 = (✓1 = 0,�1 = 0)

at all times. The orientation of the other, diffusing dipole has coordinates
⌦0 = (✓0,�0 = 0) at time t = 0.

Let ⇢(⌦, t) denote the distribution of orientations ⌦ at time t that results
from diffusion with coefficient D from initial orientation ⌦0. It satisfies the
diffusion equation,
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with initial condition ⇢(⌦, 0) = �⌦0(⌦). This diffusion is restricted to the sur-
face of the unit sphere, so the Laplace operator is, in spherical coordinates,
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By separation of the variables, first of t and ⌦, then of � and ✓, we find a
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general solution in the form

⇢(⌦, t) =
1X

`=0

X̀

m=�`

⇢m` e
�`(`+1)DtY m

` (⌦) . (4)

For each value of ` and m, ⇢m` is a constant, while Y m
` is the spherical har-

monic of degree ` and order m, explicitly,

Y m
` (⌦) =

s
2`+ 1

4⇡

(`�m)!

(`+m)!

Pm
` (cos ✓)eim� , (5)

where Pm
` is the associated Legendre Polynomial of degree ` and order m.

With this definition of the spherical harmonic, it is orthonormal, i.e.
Z ⇡

✓=0

Z 2⇡

�=0

Y m
`

⇣
Y m0

` 0

⌘⇤
d⌦ = �`` 0�mm0 . (6)

In terms of the general solution, the initial value reads

⇢(⌦, 0) =
1X

`=0

X̀

m=�`

⇢m` Y
m
` (⌦) . (7)

Multiplication by (Y m
` )

⇤, integration over the surface of the unit sphere S2,
and use of the orthonormality of the spherical harmonics yields

⇢m` = (Y m
` )

⇤
(⌦0) . (8)

Explicitly, the general solution becomes

⇢(⌦, t) =
1X

`=0

X̀

m=�`

(Y m
` )

⇤
(⌦0) e

�`(`+1)Dt Y m
` (⌦) . (9)

In terms of Legendre Polynomials, we may write it as

⇢(⌦, t) =
1X

`=0

X̀

m=�`

2`+ 1

4⇡

(`�m)!

(`+m)!

Pm
` (cos ✓0)P

m
` (cos ✓) e�`(`+1)Dt eim(���0) .

(10)
We are particularly interested in the probability distribution of polar an-

gles, since, as argued above, this is related to the probability distribution of
relative orientations of dipoles, whose orientations are measured with nor-
mal distributed errors. This distribution emerges by integrating the previous
expression over the azimuthal angle,

ppol(✓) = sin ✓

Z 2⇡

0

d� ⇢(⌦, t)

= sin ✓
1X

`=0

(`+ 1
2)P

0
` (cos ✓0)P

0
` (cos ✓)e

�`(`+1)Dt , (11)
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and using the fact that the emission dipole moments are not directional,
such that the distribution of relative angles  2 [0, ⇡/2] becomes

prel( ) = ppol( ) + ppol(⇡ �  ) . (12)

We compare this distribution to the measured relative orientations from emis-
sion dipoles (Fig. 3i,j). However, due to the relatively large angular separa-
tion between the probes compared to the noise in our measurement, this
function is practically indistinguishable from a normal distribution through-
out this paper.
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