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A Simulation study for the example of supervised variable

selection

As described in the section ‘Simulation study’ of the main paper, we conducted a simulation study

to investigate basic statistical properties of CVIIMs,n,K .

Simulation setup

To make our simulation design representative of biomedical data, we use the transcriptomic dataset

ProstatecTranscr to estimate realistic parameters to be used in the data-generating process.

Datasets of sizes n = 50 and n = 100 are generated with p = 2000 continuous variables and a

binary target variable with equal proportions in the classes.

We consider two different settings for the mean and covariance structure MeanCov for the

classes:

1. Scenario with strong signal:

2000 correlated variables are generated, of which 200 are informative, these having class-

specific means and covariances. As a first step towards obtaining the simulation setup we

preselect 2000 of the 12625 variables of ProstatecTranscr, those yielding the smallest p-

values from two-sample t-tests between the observations from the two classes. From these

we again select the 200 variables corresponding to the smallest p-values: we take these as the

informative variables, with the remaining 1800 as the non-informative. For each informative

variable we calculate the difference between the mean of the observations belonging to class

2 and that of the observations belonging to class 1, resulting in the vector δ̂ of length

200. Furthermore we calculate the empirical covariance matrix of the informative variables

separately for classes 1 and 2: Σ̂class1 and Σ̂class2. In the simulation, the vector of the

informative variables is drawn from N(0200, Σ̂class1) for observations from class 1 and from

N(δ̂, Σ̂class2) for observations from class 2. We could theoretically draw the values of all 1800

non-informative variables at once from a multivariate normal distribution with covariance

matrix estimated from the data. However, this is computationally intractable. Therefore we

split the 1800 non-informative variables into blocks of 200 variables, and for each of these

blocks we calculate the empirical covariance matrix Σ̂0j j = 1, . . . , 9. In the simulation we

draw a vector from N(0200, Σ̂0j) for j = 1, . . . , 9 and subsequentially combine these vectors.

Thus, the covariance matrix of the non-informative variables is block-diagonal with a block

size of 200.

2. Scenario with weak signal:

This scenario is conceptually equivalent to the previous with the following differences: only

100 variables are informative, the entries in the mean vector δ̂ for class 2 from scenario

1—corresponding to the 100 informative variables—are multiplied by 0.7 and the block sizes

for the non-informative variables are reduced from 200 to 100.

For the supervised variable selection we consider two different numbers psel of selected vari-

ables: psel = 10 and psel = 1000. The variables yielding the smallest p-values from two-sample

t-tests between the observations from the two classes are selected. Linear Discriminant Analysis
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is used as a classification method with psel = 10 variables and Diagonal Linear Discriminant

Analysis is used with psel = 1000. Again we consider the following commonly used splitting ratios

between the sizes of the training and test sets: 2:1 (3-fold CV), 4:1 (5-fold CV) and 9:1 (10-fold

CV). K will again denote the number of folds in the CV.

We perform the simulation for each possible combination of MeanCov, n, psel and K, leading

to 24 simulation settings in total. For each setting we simulate 2000 datasets and for each we cal-

culate the estimate CVIIMs,n,K . As with our real-data analyses we repeat the full and incomplete

CV 300 times for each simulated dataset.

For approximating the true measure CVIIMP,n,K we approximate both E[efull,K(S)] and

E[eincompl,K(S)] based on 105 simulated datasets of size n. Each dataset is randomly split into a

training set of size ntrain := dn(K − 1)/Ke and a test set of size n − ntrain. In the b-th iteration

(b = 1, . . . , 105) the approximation is done as follows. For E[efull,K(S)] the variable selection and

the training of the classifier are performed on the training set only and the resulting classifier is

subsequently applied to the test set to calculate the error rate. For E[eincompl,K(S)] we proceed in

the same way except that the variable selection is performed on the whole dataset. By averaging

over the 105 simulated datasets, we can expect to obtain close approximations of the true values

of E[efull,K(S)] and E[eincompl,K(S)].

Results

Supplementary Figure 1 shows boxplots of the CVIIMs,n,K -values for all simulation settings. The

bias with respect to the true measure values CVIIMP,n,K is negligible in all settings. However,

the variance around the true values is relatively large in many of the considered settings. Further

note that when computing CVIIM over multiple datasets—as one would in a more extensive real-

data analysis—the variability measured takes into account that within the given distribution (as

examined in this simulation study) and that over the datasets.

The dependency of CVIIMP,n,K on the individual simulation parameters can be better assessed

by examining Supplementary Figure 2. The number of observations n has a negative effect on

CVIIM in all cases. An important and slightly surprising observation is that our results suggest

no or only a slight dependence on the number of folds K. We observe higher values of CVIIM

when selecting 1000 variables, but this should not be over-interpreted since it may result from the

specific simulation design. In our supervised variable selection analyses on real datasets we did

not make this observation. The influence of the mean-covariance structure MeanCov depends on

psel (see Supplementary Figure 1). For psel = 10 we observe smaller CVIIMs,n,K-values for the

scenario with weak effects compared to that with strong effects; for psel = 1000 it is the reverse.

This might be explained by the fact that in the scenario with weak effects there are only 100

informative variables. When selecting 1000 variables more noise variables are selected, impacting

E[efull,K(S)]—causing the error to be larger—much more than E[eincompl,K(S)].

The dependency of the variance of CVIIMs,n,K on the simulation parameters and on

CVIIMP,n,K is visualized in Supplementary Figure 3. Unsurprisingly the variance decreases with

increasing n and increases with the number of folds K. The latter can be explained as follows:

CVIIMs,n,K involves the fraction of two CV estimators which, with increasing K, become in-

creasingly dataset dependent—due to the training sets sharing more observations with the entire
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dataset—and therefore more variable. In the scenario with the stronger effects we generally ob-

serve larger variances. When selecting only psel = 10 variables the variances are also much higher

than for psel = 1000.

For the scenario with psel = 10 we observe a strong dependency of the variance on the true

value of the measure, with smaller measure values leading to smaller variances. This dependency

cannot be seen as clearly in the case of psel = 1000: a possible explanation is that the measure

values are in general higher in this setting, obscuring the dependence at the—relatively—smaller

CVIIM values.

The left panel of Supplementary Figure 4 visually suggests a dependence of CVIIMP,n,K on

the true error E[efull,K(S)], meaning that the use of the ratio of the errors in the calculation of

CVIIM might not be sufficient to eliminate such an undesirable dependency. However this ob-

served dependency may be explained by two observations regarding the simulation design. Firstly,

CVIIMP,n,K as well as E[efull,K(S)] is larger for the smaller sample size n = 50, corresponding to

the upper part of each ellipse. This negative dependency on n is natural—see the section ‘Further

issues’ of the main paper. Secondly, the upper right ellipse—being responsible for much of the

observed positive dependency of CVIIMP,n,K on E[efull,K(S)]—contains all scenarios with both

weak effects and psel = 1000. As stated above, we suppose that the higher number of noisy

variables inherent to psel = 1000 is responsible for the increase in E[efull,K(S)] and CVIIMP,n,K .

The plot in the right panel of Supplementary Figure 4 suggests a much stronger dependence of

max( E[efull,K(S)] − E[eincompl,K(S)], 0 ) on the true error. Here the values corresponding to the

weak signal are also larger for psel = 10 and in the case of psel = 1000 the difference between the

weak and strong signals is much bigger than for CVIIMP,n,K .

In the section ‘Illustration’ in the main paper and in Appendix D we attempt to reflect the

variance of CVIIMs,n,K through the use of the 25%- and 75%-quantiles of CVIIMs,n,K,b = 1 −

eincompl,K(s)b/efull,K(s)b, where the index b indicates that these errors were obtained for run b

(with b = 1, . . . , B). Using the simulation results we can investigate whether the variability of

the CVIIMs,n,K,b-values is indeed a meaningful surrogate for the variance of CVIIMs,n,K . As a

measure for the variability of the CVIIMs,n,K,b-values, for each simulated dataset we calculate

the empirical variance of the CVIIMs,n,K,b-values (b = 1, . . . , 300), defining it as the “observed

variability”. In Supplementary Figure 5 the values of the observed variability are plotted against

the (approximated) true variance. Plots on the log-scale are also provided to enable comparisons

of the small boxplots. In all plots we observe that the variance of the observed variability gets

larger with a larger true variance. The results moreover clearly suggest that the size of the

observed variability is also strongly and positively influenced by the size of the true variance. This

dependency seems to be strongest for K = 3 and weakest for K = 10. This observed diminished

relation between observed variability and actual variance with increasing value of K, becomes

clearer when considering a fundamental shortcoming of the observed variability, which inhibits an

even stronger relation to the actual variance. The observed variability does not account for the

fact that the error estimates in the B (incomplete) CV repetitions are dependent. For smaller

training set sizes the individual CV estimates in efull,K(s) as well as in eincompl,K(s) are less

similar, i.e., less dependent. In these cases the observed variability thus better reflects the true

variance. In contrast, in the case of larger training set sizes, the stronger dependency makes the

behavior of the actual variance more different from that of the observed variability. These results
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suggest that the error bars obtained for the small K-values are most appropriate for comparing

the variability of individual CVIIMs,n,K -values.
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B Methodological background

B.1 Prediction rules, prediction errors and their estimation

Let X ⊂ R
p denote the predictor space and Y = {1, 2} the space of the response variable. Note that

this notation also allows for categorical covariates, e.g. X = {0, 1}p ⊂ R
p in the case of dummy-

coded categorical predictors. Let S = {(X1, Y1), . . . , (Xn, Yn)} be an i.i.d. random sample with

observations drawn from the distribution P . Most importantly, in our paper x ∈ X denotes the

“raw” data, meaning that these predictors may be subject to data preparation steps (possibly

modifying their number or scale of measurement) before being used as predictors in classification.

We consider a classification function g : X 7→ Y, x 7→ g(x) that takes the vector x as an

argument and returns a prediction y of the value of the response variable. For example, consider a

classification task where, based on microarray samples, patients are classified as having cancer or

not using the Nearest Shrunken Centroids approach [1]. Then the corresponding function g would

take the pre-normalized expression values as an argument, perform normalization and classify the

sample using a certain value of the shrinkage parameter. These steps are assumed to be performed

in an ideal way, where all occurring parameters are estimated or optimized using a hypothetical

dataset with sample size tending to infinity.

In practice g is estimated from the available data. We therefore define ĝS : X 7→ Y,

x 7→ ĝS(x) as the classification function estimated from S. In the example outlined above, this

means that the parameters involved in the normalization procedure, as well as the averages and

variances involved in the Nearest Shrunken Centroids classifier, are estimated from S and that

the shrinkage parameter is also chosen based on S. The estimated classification function ĝS can

then be used to predict y for a new observation.

Note that—as already outlined in the section ‘Addon procedures’ of the main paper—depending

on the procedures involved in the estimation, it is not always straightforward to construct such

a function ĝS that can be applied to predict independent data. From now on, we will however

assume that the necessary addon procedures (see the section ‘Addon procedures’ of the main

paper) are available and that we can thus construct the function ĝS .

It is important to assess the prediction error of ĝS , which is defined as

ε[ĝS ] := E(X,Y )∼P [L(ĝS(X), Y )] =

∫
X ×Y

L(ĝS(x), y) dP (x, y), (1)

where L(·, ·) is an appropriate loss function, for example the indicator loss yielding the misclassi-

fication error rate, as used in the main paper. The error defined in Eq. (1) is commonly termed

“conditional” because it refers to the specific sample S. The average error over all samples fol-

lowing P n is referred to as the unconditional error and denoted by ε(n) := ES∼P n [ ε[ĝS ] ].

Let s = {(x1, y1), . . . , (xn, yn)} denote a realization of the random sample S. If we had a

large independent sample at hand we could estimate ε[ĝs] directly by comparing the true values

of the response variable in this data to the predictions made by ĝs. Having only s at hand a

naive approach would be to estimate ε[ĝs] using s itself as test data. This approach yields the so-

called “apparent error” or “resubstitution error” that is well known to be downwardly biased (i.e.,

too optimistic) as an estimator of ε[ĝs], since estimation of the classification function and error

estimation are conducted on the same data. Resampling-based error estimation can be performed
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to address this issue. The sample s is iteratively split into non-overlapping training and test

datasets. In each iteration the function g is estimated based on the training set, and the error of

this estimated function is assessed based on the test set. We examine K-fold cross-validation—the

most widely used of these resampling-based approaches.

Given a random partition of the dataset s into K approximately equally sized folds s1, . . . , sK ,

the K-fold cross-validation error estimate is given as

1

K

K∑
k=1

1

#sk

∑
j ∈ {i : (xi,yi) ∈ sk}

L(ĝs\sk
(xj), yj),

whereby # represents the cardinality, s \ sk is the training set in iteration k and sk is the test

set. Since this estimate (highly) depends on the considered random partition of the sample s into

K folds, it is recommended to repeat this procedure B > 1 times and average the error estimates

over the B repetitions. With sb1, . . . , sbK denoting the folds considered in the b-th repetition, the

repeated K-fold cross-validation error estimate is given as

eK(s) =
1

B

B∑
b=1

1

K

K∑
k=1

1

#sbk

∑
j ∈ {i : (xi,yi) ∈ sbk}

L(ĝs\sbk
(xj), yj). (2)

If, for simplicity, we assume that the sb1, . . . , sbK (b = 1, . . . , B) are equally sized with size

ntrain,K := #s \ sbk for b ∈ {1, . . . , B} and k ∈ {1, . . . , K}, it can be easily seen that eK(s) is an

unbiased estimator of ε(ntrain,K) and therefore an upwardly biased estimator of ε(n). This bias

is called the “inherent bias” of CV in [2]. Note that the notation eK(s) does not reflect the fact

that the repeated K-fold cross-validation error estimate depends on the random partitions in the

B iterations. For our purposes we assume B to be chosen large enough so that this dependency

can be ignored.

B.2 Incomplete versus full cross-validation

With the issue of incomplete cross-validation in mind, we introduce the notation

ĝa2

a1
: X 7→ Y x 7→ ĝa2

a1
(x) a1 ⊆ a2 ⊆ s

to denote an estimated classification function that is estimated partly based on a sample a2 and

partly based on a possibly smaller subsample a1 (i.e., one or several steps may be performed on a

bigger sample). Returning to the example of microarray-based classification, it is common practice

to run the normalization procedure—and often also the parameter tuning—based on the whole

dataset s, but to perform the training of the classifier within cross-validation, i.e., based only on

the training set s \ sbk in each iteration k of each repetition b. In this scenario a2 would be the

whole dataset s and in each CV iteration a1 would be the training set s \ sbk.

With a1 = s \sbk and a2 = s for b = 1, . . . , B and k = 1, . . . , K, we obtain the incomplete CV
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error estimate, which is downwardly biased as an estimator of ε(ntrain,K):

eincompl,K(s) :=
1

B

B∑
b=1

1

K

K∑
k=1

1

#sbk

∑
j ∈ {i : (xi,yi) ∈ sbk}

L(ĝs

s\sbk
(xj), yj),

where the index “incompl” indicates that the whole sample s is used for at least part of the

data analysis steps required for the estimation of g, and that the resulting CV procedure is

thus incomplete. The estimator eincompl,K(s) is unbiased as an estimator of the average incom-

plete error εincompl(ntrain,K ; n) := ES∼P n [L(ĝS

Strain,K
(Xntrain,K+1), Yntrain,K +1)], with Strain,K =

{(X1, Y1), . . . , (Xntrain,K
, Yntrain,K

)} and (Xntrain,K+1, Yntrain,K+1) playing the role of an arbitrary

test set observation. We assume exchangeability of the random observations in S.

Furthermore, since by definition ĝ
s\sbk

s\sbk
= ĝs\sbk

, we obtain the usual repeated K-fold error

estimate from Eq. (2) if we set a1 = a2 = s \ sbk for k = 1, . . . , K, and b = 1, . . . , B. This

estimator is denoted by efull,K(s):

efull,K(s) := eK(s) =
1

B

B∑
b=1

1

K

K∑
k=1

1

#sbk

∑
j ∈ {i : (xi,yi) ∈ sbk}

L(ĝ
s\sbk

s\sbk
(xj), yj),

where the index “full” underlines that all steps of prediction rule construction are conducted within

the CV procedure, i.e., using the training sets only.

For easier interpretation, in the main paper and in other sections of Additional file 2 we write

E[efull,K(S)] for ε(ntrain,K) and E[eincompl,K(S)] for εincompl(ntrain,K ; n).

B.3 Behavior of CVIIMs,n,K for small εfull(ntrain,K)-values

For very small values of εfull(ntrain,K), extreme CVIIM estimates can occur (either zero or very

high values). For very small values of efull,K(s), the CVIIM estimate is highly sensitive to rel-

atively small differences between eincompl,K(s) and efull,K(s), which may be due at least partly

to random fluctuations. For example, suppose that efull,K(s) = 0.01 and eincompl,K(s) = 0.001,

then we would have CVIIMs,n,K = 0.9. Note however that such extremely large results are ex-

pected to be rare due to a mechanism related to regression toward the mean: considering the high

variance of CV estimates, in many cases very small values of efull,K(s) are an underestimation of

εfull(ntrain,K). In this case it is unlikely that εincompl(ntrain,K ; n) is considerably more affected

by underestimation. Thus in such a situation it is unlikely that eincompl,K(s) is much smaller than

efull,K(s). Instead, the incomplete CV error estimator eincompl,K(s) is more likely to be closer to

its mean than efull,K(s), thereby preventing an overly large CVIIM estimate.
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C Normalization study: Dependency of CVIIMs,n,K on efull,K(s)
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Supplementary Figure 6: Dependency on CV errors in normalization study. Upper panel:
CVIIMs,n,K-values versus efull,K(s)-values for all settings; Lower panel: Zero-truncated differ-
ences of efull,K(s)- and eincompl,K(s)-values versus efull,K(s)-values for all settings. The colors
and numbers distinguish the datasets. The filled black circles depict the respective means over
the results of all settings obtained on the specific datasets.
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D Other preparation steps

Optimization of tuning parameters An important data preparation step is the choice of

tuning parameters. To illustrate the use of CVIIM in this context, we consider seven classification

methods successively, each with one tuning parameter of interest optimized from a grid through

internal CV as described in the section ‘Study design’ of the main paper: the number of iterations

mstop in componentwise boosting with logistic loss function (grid: {50, 100, 200, 500, 1000}) [3],

the number of neighbors in the k-Nearest-Neighbors algorithm (kNN) (grid: {1, 2, . . . , 10}), the

L1 shrinkage intensity in Lasso regression expressed as the fraction of the coefficient L1-norm

compared to the maximum possible L1-norm (grid: {0.1, 0.2, . . . , 0.9}) [4], the shrinkage intensity

for the class centroids in Nearest Shrunken Centroids (grid: {0.1, 0.25, 0.5, 1, 2, 5}), the num-

ber of components in Linear Discriminant Analysis on Partial Least Squares components (grid:

{1, 2, . . . , 10}) [5], the number mtry of variables randomly sampled as candidates at each split

in Random Forests (grid: {1, 5, 10, 50, 100, 500}) [6] and cost of constraints violation in Support

Vector Machines with linear kernel (SVMs) (grid: {10−5 · 40k/7 : k = 0, . . . , 7}) [7].

We use the same four example datasets as in the illustrative application of CVIIM to supervised

variable selection presented in the section ‘Illustration’ of the main paper. Supplementary Figure

7 and Supplementary Table 1 show the results. None of the methods exhibit large CVIIMs,n,K -

values. According to our rule of thumb only one result is classified as a medium effect—tuning of

the number of components in PLS-LDA for dataset GSE33205—and the rest are classified as weak

effects.

Researchers applying CV to optimize tuning parameters in the way described here may be

tempted to use as an error estimate of the prediction rule that CV error estimate obtained during

optimization for the ultimately chosen tuning parameter value, i.e. the smallest one. The optimistic

bias of this estimate has been studied in the literature [2, 8, 9]. Given a large enough number

of repetitions of the CV used in the optimization, this optimistic bias becomes equivalent to

the bias resulting from performing the optimization before CV, as studied here. This is because

the dependence of the CV error estimates—those of the optimization process—on the specific

training/test set divisions diminishes with increasing number of repetitions. As a result, the

additional distortion of the estimate studied by Varma and Simon [2] and Bernau et al. [8], which

is due to the impact of optimally selecting the smallest error estimate, compared to the distortion

of the incomplete CV estimate studied here, decreases in the same way.

We made an effort to choose reasonable parameter grids; however the above results are likely

grid-dependent. Moreover, for methods such as Random Forests involving several important tun-

ing parameters, it would be interesting to investigate the bias induced by incomplete CV when

optimizing two or more tuning parameters simultaneously.
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datasets.
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Supplementary Table 1: Estimates of global CVIIM from the tuning study

number of sel. K = 3 K = 5 K = 10

variables

Boosting 0.0385 0.0415 0.0591

kNN 0.0227 0.0309 0.0465

Lasso 0.0124 0.0134 0.0126

NSC 0.0554 0.0472 0.0501

PLS-LDA 0.0456 0.0343 0.0486

Random Forest 0.0097 0.0014 0.0025

SVM 0.0350 0.0330 0.0417

Variable filtering by variance For each variable the empirical variance is calculated and half

of the variables with the largest variances are selected. Such procedures are common in the context

of gene expression data analysis. Their aim is to eliminate genes that exhibit little variation in their

profile and are therefore generally not of interest [10]. We again use Diagonal Linear Discriminant

Analysis as a classification method and the same four example datasets as in the case of supervised

variable selection and tuning. Here we only observe zero or almost zero values. The global CVIIM

estimates are correspondingly zero or (for K = 3) almost zero. These preliminary results suggest

that the selection of a large number of variables in an unsupervised fashion might be performed

outside CV, in contrast to supervised variable selection.
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Supplementary Figure 8: CVIIMs,n,K -values from variable filtering study. The numbers distin-
guish the datasets.

Imputation of missing values We perform k-Nearest-Neighbors imputation [11], a procedure

that is commonly used for the analysis of high-dimensional microarray data. Prior to imputation
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the variables are centered and scaled and the estimated means and standard deviations are stored.

After imputing the values, they are rescaled using the stored standard deviations and the stored

means are added to retransform the data to the original level. The result of the imputation may

depend critically on the number k of nearest neighbors considered. Therefore to optimize this

parameter on the grid {1, 2, 3, 5, 10, 15} we again employ 3-fold CV. For correct addon imputation,

in addition to using the means and standard deviations estimated from the training data, we also

only examine the training data when searching for the k nearest neighbors.

For this illustrative study, we first consider a collection of five datasets, GenitInfCow, con-

taining measurements on 51 cows, where 36 suffer from a major genital infection. Each dataset

(IDs 33 - 37 in Table 1 in the main paper) contains measurements from a specific week and com-

prises between 21 and 27 variables. These datasets were obtained via personal communication

with Michael Schmaußer. Random Forests are used as a classification method here. Our second

example is the dataset ProstatecMethyl (ID 38 in Table 1), containing 222 variables obtained

through DNA methylation profiling of 70 patients, of which 29 suffer from metastatic prostate

cancer. This dataset was provided by the fifth author. Nearest Shrunken Centroids (NSC) are

used as a classification method for this dataset. The shrinkage intensity (for NSC) and mtry (for

Random Forests) are chosen by 3-fold CV.

The results, shown in Supplementary Figure 9, suggest that in this setting it seems to be

irrelevant whether the considered imputation procedure is trained on the whole dataset or based

on the training datasets only. The GenitInfCow datasets contain proportions of missing values

between ∼ 8% and ∼ 19% with tendentiously lower proportions for more advanced weeks. This

pattern is also reflected by the CVIIMs,n,K -values, where we observe decreasing values for more

advanced weeks, with the highest values being observed for the Dataset 33, that with the greatest

number of missing values. The high-dimensional dataset ProstatecMethyl yields CVIIMs,n,K -

values of zero for all K-values. In this dataset only ∼ 3% of values were missing, which is—although

small compared to the GenitInfCow datasets—a proportion within the range of proportions likely

to occur in practice.
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E Dependency of CVIIM on sample size
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Supplementary Figure 10: Normalization study: Dataset-specific means of the CVIIMs,n,K- and
efull,K(s)-values plotted against the sample sizes of the datasets. The solid lines are LOESS
curves.
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F Combination of several steps

We considered the following combination of steps: imputation of missing values, supervised vari-

able selection, and optimization of tuning parameters. For imputation the algorithm described

in Appendix D was used. For supervised variable selection we chose the 10 variables with the

smallest p-values from Wilcoxon’s two-sample tests. As a classification method Random Forests

with mtry as a tuning parameter was used. Here, mtry was optimized from the grid {1, 2, . . . , 5}

through internal CV as described in the section ‘Study design’ of the main paper.

In addition to efull,K(s) (where all three preparation steps are conducted on the training

datasets and addon procedures are used to prepare the test datasets) and eincompl,K(s) (where

all three steps are conducted on the whole dataset), for each step we also calculate the “step-

specific incomplete CV error” (abbreviation: stspincCVerr) obtained when the considered step

is performed using the whole dataset and the others within CV. stspincCVerrs are calculated

to investigate the contribution of the individual steps to the discrepancy between efull,K(s) and

eincompl,K(s).

In the following we describe the procedures performed to obtain the stspincCVerrs. For the

first step (imputation), the stspincCVerr is simply computed by performing the considered step

using the whole dataset and then starting the CV repetitions, i.e., all subsequent steps are included

in the repeated CV. For steps which are not performed when starting preparation, we have to act

differently to obtain a stspincCVerr. In fact, each preceding step changes the data. Therefore

we cannot employ ordinary CV in the process of calculating the stspincCVerrs, because it is

not possible to perform the considered step only once on the whole dataset. Instead, to obtain

a stspincCVerr-value in these cases, we apply the following CV-like procedure using a random

partition of the dataset into K equally sized folds as in ordinary CV. For k ∈ {1, . . . , K}: 1)

Perform all steps up to the considered step on the k-th training set, each time each time adjusting

the corresponding test set with the appropriate addon procedure; 2) Merge training and test set

and perform the considered step on the resulting concatenated dataset; 3) Split the result out of 2)

into the division of training and test data again; 4) Perform all remaining data preparation steps

on the training set, again each time adjusting the test set with the appropriate addon procedure;

5) Calculate the misclassification error of the prediction rule on the test set. We stress that the

only goal of this procedure is to assess the impact of the individual steps within the combinations.

It has no other meaningful application in error estimation in practice.

As in the analyses of single steps, we also perform B = 300 repetitions of the CV(-like)

procedures. We used the dataset ProstatecMethyl.

The CVIIMs,n,K -values were 0.2846, 0.3121 and 0.3442 for K = 3, K = 5 and K = 10, respec-

tively. When calculating the step-specific errors (Supplementary Figure 13) it was interesting to

notice that when performing only supervised variable selection on the whole dataset the error was

virtually identical as when performing all steps on the whole dataset. Correspondingly, incomplete

CV based on each of the other steps singly gave results almost no different to full CV. Therefore

in this example the supervised variable selection was almost completely alone responsible for the

difference between the completely correct and incorrect CV procedure.

We summarize that individual influential steps can play a dominating role when considering

combinations of different steps. Note, however, that the analysis presented in this section should
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be considered an illustration. The results observed here cannot be generalized, since they can

depend strongly on the specific setting and dataset used.
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Supplementary Figure 13: Step-specific incomplete CV errors for the data preparation combination
of imputation, variable selection and tuning
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