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SUMMARY

Males often face a trade-off between investments in
precopulatory and postcopulatory traits [1], particu-
larly when male-male contest competition deter-
mines access to mates [2]. To date, studies of pre-
copulatory strategies have largely focused on visual
ornaments (e.g., coloration) or weapon morphology
(e.g., antlers, horns, and canines). However, vocali-
zations can also play an important role in both male
competition and female choice [3–5]. We investi-
gated variation in vocal tract dimensions among
male howler monkeys (Alouatta spp.), which produce
loud roars using a highly specialized and greatly
enlarged hyoid bone and larynx [6]. We examined
the relative male investment in hyoids and testes
among howler monkey species in relation to the level
of male-male competition and analyzed the acoustic
consequences of variation in hyoid morphology.
Species characterized by single-male groups have
large hyoids and small testes, suggesting high levels
of vocally mediated competition. Larger hyoids lower
formant frequencies, probably increasing the acous-
tic impression of male body size and playing a role
analogous to investment in large body size or weap-
onry. Across species, as the number of males per
group increases, testes volume also increases, indi-
cating higher levels of postcopulatory sperm compe-
tition, while hyoid volume decreases. These results
provide the first evidence of an evolutionary trade-
off between investment in precopulatory vocal char-
acteristics and postcopulatory sperm production.
Current B
RESULTS AND DISCUSSION

Large body size, weaponry, and/or ornaments can confer an

advantage to males during reproductive competition, allowing

them to better dominate precopulatory contests and increase

the number of offspring they sire [3]. However, when multiple

males copulate with the same female, postcopulatory sperm

competition occurs. This favors adaptations in male reproduc-

tive physiology, such as the production of more numerous and

larger ejaculates (facilitated by larger testes) or faster and more

enduring spermatozoa, which increase the likelihood of fertiliza-

tion by a given male over competitors [7]. Vocalizations are also

an important component of sexual selection in many animal spe-

cies, often playing a crucial role in determining the outcome of

agonistic contests and/or female choice [3–5]. However, despite

considerable interest in the idea of vocal trade-offs [8], little is

known about the evolutionary dynamics favoring investment in

vocal characteristics versus sperm production.

The powerful and characteristic roars of howler monkeys

(genus Alouatta) are among the loudest vocalizations produced

by any terrestrial animal (Figures 1A and 1B and Movie S1). All

howler monkey species have a highly modified larynx with a

greatly enlarged cup-shaped hyoid bone containing an air sac,

which is thought to function as a resonating chamber for their

calls [6, 9] (Figures 1C and 1D andMovie S2). The highly special-

ized anatomy of the vocal apparatus, coupled with the time and

energy invested in vocalizing [10, 11], suggests an important role

for roaring in howler monkey fitness—particularly given their en-

ergy-minimizing lifestyle [12–14]. Multiple studies suggest that

howler monkey roars function in male-male competition as terri-

torial displays, regulating the use of space by groups [10, 15–17],

although their precise functional significance and evolution is

debated [18].

The howler monkey hyoid bone differs considerably in size be-

tween the sexes and among species [19, 20], but the full extent of
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Figure 1. Examples of Howler Monkey Vocal-

izations and Vocal Apparatus

(A and B) Group chorus of (A) unimale Venezuelan

red howler monkeys, Alouatta seniculus (copyright

CarolynM. Crockett), and (B) multimale-multifemale

black and gold howler monkeys, Alouatta caraya

(black, males; gold, females; copyright Mariana

Raño).

(C) Computed tomography (CT) surface model of

adult male Alouatta sara showing highly modified

vocal tract (left mandible removed from image).

(D) Schematic representation of the CT model. Red,

hyoid; green, larynx; pink, tongue; dark gray, air

sacs; brown, palate.

See also Movies S1 and S2.
this variation and the selection pressures underlying variability

have not been investigated quantitatively. For our core ana-

lyses, we collected comparative data on nine of the ten classi-

cally recognized Alouatta species [21], using laser surface

scanning to produce virtual 3D models of 255 hyoids. We

then used phylogenetic methods and average species level

data on body weight, skull length, canine length, testes volume,

and number of males per group (data from five to nine species,

depending on the dataset) to examine whether differences

in male hyoid volume were related to variation in male compe-

tition among species—the ‘‘vocal competition’’ hypothesis.

We also tested an alternative ‘‘environmental adaptation’’ hy-

pothesis, that howler monkey hyoids are adapted to produce

different frequency vocalizations in different habitats [22], by

analyzing data on net primary productivity. Finally, we used bio-

acoustic methods to analyze recordings of male roars and

examined the acoustic consequences of variation in male hyoid

morphology among species, hypothesizing that a more volumi-

nous hyoid bone reduces formant spacing (DF) and increases

the acoustic impression of body size conveyed by roars [23–

25] (i.e., the ‘‘size exaggeration’’ hypothesis [26, 27]). In order

to provide broader comparative context to the core analyses

described above, we performed CT and MRI on the cadavers

of two adult male howler monkeys (Alouatta sara and

A. caraya) and one adult male spider monkey (Ateles fusci-

ceps). This allowed us to visualize the howler monkey vocal

tract and measure vocal fold length and vocal tract length

(VTL) for comparison with other mammals.

We found that hyoid volume is highly sexually dimorphic

(F(1,255) = 497.6, p < 0.001) and varies significantly among spe-

cies (F(7,255) = 52.4, p < 0.001). We also found a significant inter-

action between sex and species (F(7,255) = 30.1, p < 0.001),

with greater sexual dimorphism in species with larger hyoids

(Figure 2 and Table S1). Log10 male hyoid volume was signifi-

cantly correlated with log10 female hyoid volume (phylogenetic
2840 Current Biology 25, 2839–2844, November 2, 2015 ª2015 The Authors
generalized least squares [PGLS]: R2 =

0.89, l = 0.00, F(1,7) = 54.05, p < 0.0005).

The average number of adult males per

social group varied from 1.0 ± 0.0 to

3.0 ± 0.5 across species (Table S1), and

log10 male hyoid volume correlates nega-

tively with the number of males per group

(PGLS: R2 = 0.83, l = 0.00, F(1,6) = 29.61,
p < 0.005; Figure 3A), consistent with precopulatory sexual se-

lection of this trait. Testes volume also varied significantly among

species (F(4,86) = 19.1, p < 0.001) and correlated significantly and

positively with the number of males per group (PGLS: R2 = 0.78,

l = 0.00, F(1,3) = 10.45, p < 0.05; Figure 3B), consistent with the

hypothesized role for testes volume in postcopulatory sperm

competition. Crucially, there was a significant negative correla-

tion between male hyoid volume and testes volume (PGLS:

R2 = 0.94, l = 0.00, F(1,3) = 43.84, p < 0.01; Figure 3C). Canine

length was sexually dimorphic (F(1,107) = 148.89, p < 0.001) but

did not vary across species (F(8,107) = 1.16, p = 0.33), and there

was no interaction between sex and species (F(8,107) = 1.38,

p = 0.22). At the species level, canine length was not correlated

with body weight, number of males per group, hyoid volume, or

testes volume (see the Supplemental Experimental Procedures),

suggesting that sexual selection on canine weaponry does not

vary across species in this taxon.

We found no support for the ‘‘environmental adaptation’’

hypothesis: hyoid volume was not predicted by net primary pro-

ductivity (PGLS: R2 = 0.19, l = 1.00, F(1,6) = 1.44, p = 0.27; gen-

eral linear mixed model [GLMM] males: Akaike information crite-

rion [AIC] model = 613.9, AIC null = 611.9, c2
(1) = 0.01, p = 0.90,

n = 144; GLMM females: AIC model = 351.7, AIC null = 349.9,

c2
(1) = 0.19, p = 0.67, n = 111).

As a result of their anatomical modifications, howler monkeys

produce exceptionally low-frequency vocalizations for their

body size compared with other mammals (Figure 4A). MRI-

based measurements indicated that howler monkey vocal folds

are extremely long for an animal of their size (4.08 cm in A. sara

and 3.55 cm in A. caraya, Figure S1; human male vocal fold

length is �1.5 cm [30]). Based on a theoretical string model

[30] of the vocal folds, we found that the vocal fold lengths

obtained from the MRI-based measurements accurately

predict the remarkably low fundamental frequency (F0) of howler

monkey vocalizations (see the Supplemental Experimental



A B C Figure 2. Variation in Hyoid Morphology

among Howler Monkey Species

(A) Phylogeny of the howler monkey (Alouatta)

species studied, with Ateles fusciceps as an

outgroup. Numbers at the nodes indicate the

estimated dates for splitting events (Ma), where

known (data from [21]).

(B) 3D models showing the variation in size and

shape of average hyoids in males (left) and females

(right), corresponding to the species in (A) (hyoids

were not available for Alouatta pigra females).

(C) Computed tomography surface models,

showing the hyoid (red) and thyroid cartilage

(green). The left side of the mandible has been

made transparent to make the hyoid bone fully

visible.
Procedures). This explains how a howler monkey could produce

an F0 similar to that of tigers or reindeer, despite major differ-

ences in body size (7 kg versus >100 kg; Figure 4B). However,

F0 is not typically measureable in howler monkey roars, which

are noisy, broadband sounds presumably generated via deter-

ministic chaos (Figure S2), and in terrestrial mammals, empirical

evidence suggests that F0 is not typically a reliable index of body

size within age and sex classes [31, 32]. In contrast, numerous

studies suggest that formant frequencies can provide reliable in-

formation about body size within species [26] and that individ-

uals attend to this information in both inter- and intra-sexual con-
Current Biology 25, 2839–2844, N
texts [23–25]. Male log10 hyoid volume

was significantly negatively correlated

with DF in male roars (R2 = 0.88, l =

0.00, F(1,5) = 35.14, p < 0.005; Figure 3D).

For example, in A. caraya, mean DF was

535 Hz, whereas in A. sara mean DF

was 388 Hz (Table S1). These values pre-

dict VTLs of 33 cm and 45 cm, respec-

tively (Table S2), even though total sitting
height is only about 40–50 cm in this genus [33]. Although VTL is

greater in howler monkeys than other similarly sized primates

[26] as a result of their unusual vocal anatomy, these values

are inconsistent with our MRI-based VTL measurements of

20.6 cm in A. caraya and 26.3 cm in A. sara (Figure S1). These

findings are consistent with the hypothesis that large hyoids

may have evolved to enable lower DF than expected for body

size, thereby increasing the acoustic impression of body size

conveyed by howler monkey roars.

Across species, hyoid volume did not correlate with body

weight in either males (PGLS: R2 = 0.06, l = 1.00, F(1,4) = 0.25,
Figure 3. Relationship between Key Vari-

ables in Pre- and Postcopulatory Male Stra-

tegies across Howler Monkey Species

Regression plots showing (A) log10 mean male

hyoid volume versus mean number of males, (B)

mean testes volume versus mean number of

males per species, (C) log10 mean male hyoid

volume versus mean testes volume, and (D) log10
mean male hyoid volume versus DF. Each point

represents the mean value for a distinct howler

monkey species: Alouatta macconnellii (orange),

A. belzebul (black), A. sara (pink), A. guariba (red),

A. seniculus (purple), A. caraya (dark blue),

A. palliata (yellow), and A. pigra (light blue). The

slopes and intercepts of the regression lines of the

linear model and PGLS model were identical in all

cases, so only one line is visible in each figure.

Mean values ±SE are shown. Sample sizes are

given in Table S1. See also Figure S2 and Tables

S1 and S2.
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Figure 4. The Exceptionally Low Call Frequency of Howler Monkey

Vocalizations

(A) Log-log plot of bodyweight versus F0 for a rangemammals, highlighting the

low-frequency vocalizations of howler monkeys (adapted from [28] with

permission from AAAS).

(B) Log-log plot of vocal fold length versus F0 for a range mammals (adapted

from [29] with permission from Elsevier), showing that the low-frequency

vocalizations of howler monkeys are to be expected, given their remarkable

vocal fold length.

Data sources are provided in the Supplemental Experimental Procedures. See

also Figure S1.
p = 0.65) or females (PGLS: R2 = 0.002, l = 0.70, F(1,5) = 0.02, p =

0.90), and the PGLS regression at the species level revealed no

significant relationship between hyoid volume and skull length

(male PGLS: R2 = 0.14, l = 0.00, F(1,4) = 0.64, p = 0.46; female

PGLS: R2 = 0.13, l = 0.00, F(1,4) = 0.57, p = 0.49). However, hyoid

volume was positively correlated with skull length when a larger

sample of individual-specific datawas used (GLMM:AICmodel =

1002.8, AIC null = 2271.6, c2
(1) = 1270.9, p = <0.001, n = 117).

This suggests that despite clear differences between species,

hyoid volume nonetheless correlates positively with body size

within species, and DF may thus act as an exaggerated, but

honest, signal of body size. This is consistent with studies of

other mammal taxa, which have shown that anatomical adapta-

tions of the vocal tract may exaggerate the acoustic impression

of body size relative to other species but still convey reliable in-

formation about body size relative to conspecifics [34, 35].

Our results provide strong evidence for the vocal competition

hypothesis, consistent with Darwin’s suggestion that the vocal

organs of male Alouatta have been sexually selected [17]. Fe-

males are likely to require large hyoids for some of the same rea-

sons as males, e.g., inter-group resource defense (infants, food,
2842 Current Biology 25, 2839–2844, November 2, 2015 ª2015 The
and territory) and predator deterrence [18]. However, it is unclear

why female hyoid volume should correlate with male hyoid vol-

ume. One reason could be that female hyoid volume is a ‘‘corre-

lated response’’ of selection for large hyoids in males [36].

Another reason could be that there is independent selection for

larger hyoids in the females of species in groups with fewer

males (in which males also have large hyoids), e.g., as a strategy

against male infanticide [37], or owing to variation in female

contest competition among species [38]. These phenomena

are not mutually exclusive, and further research would be neces-

sary to disentangle this interesting question.

These data provide the first evidence in any species of an

evolutionary trade-off between a precopulatory vocal-invest-

ment strategy and postcopulatory sperm competition. The

phylogenetic correlations we observe are consistent with at least

two non-mutually exclusive functional mechanisms, which may

work at different phylogenetic levels. The first model, known as

the ‘‘Y model,’’ or the acquisition-allocation model, holds that

for a given amount of a resource, it is not possible to increase

allocation to two traits at once [39]. Traits used in pre- and post-

copulatory male-male competition may both be energetically

expensive [1, 40], leading to a trade-off in resource allocation.

The second mechanism results from trade-offs that occur

when evolutionary change in one trait directly decreases the rele-

vance or performance of another [39, 41]. Under this model, the

coevolution of intense female monopolization and large hyoids in

unimale species limits the opportunity for sperm competition,

leading to relaxed selection pressure on testes. In contrast, a fail-

ure of precopulatory male-male competition to repel rivals re-

sults in increased postcopulatory competition. Matching data

on testes and hyoids from the same males across multiple spe-

cies would be required to fully explore the precise functional na-

ture of trade-offs within and between species, providing an

exciting avenue for future research.
EXPERIMENTAL PROCEDURES

Morphological Traits

We analyzed 255 (111 females and 144 males) apparently non-pathological,

adult hyoids at a number of museums. Species were identified on the basis

of geographic location of the site of provenance of the specimens. Following

a standardized protocol, we scanned the bullate basihyoid bone using a 3D

laser surface scanner and calculated hyoid volume from the resulting models

(see the Supplemental Experimental Procedures). We used both new and

published data on testes volume, canine length, and body weight, though

the datasets were not matching, i.e., were not from the same individuals

(see the Supplemental Experimental Procedures). However, where possible,

we collected matching data on skull length for the hyoids analyzed in the da-

taset (see the Supplemental Experimental Procedures). Data on morpholog-

ical traits are given in Table S1. In order to analyze VTL and vocal fold length,

we also performed CT and MRI on the cadavers of two adult male howler

monkeys of different species (Alouatta sara and A. caraya) and one adult

male spider monkey (Ateles fusciceps) (see the Supplemental Experimental

Procedures).
Group Size and Composition

Wecompiled data on group size and composition from the literature for each of

the howler monkey species studied (see the Supplemental Experimental Pro-

cedures and Table S3). Given that local environmental factors, such as varia-

tions in climate and vegetation, may affect group size and composition within

species, we calculated mean values per study site and then took the average
Authors



across study sites. We also ran analyses using the mean values for all groups

(rather than sites), and the results did not change (Table S4).

Net Primary Productivity

We used 2013 data from the Moderate Resolution Imaging Spectroradiometer

(MODIS) on the Terra satellite [42] to calculate the annual NPP for the location

of provenance of each hyoid specimen (see the Supplemental Experimental

Procedures).

Acoustic Analyses

We searched theMacaulay Library (http://macaulaylibrary.org/) and the British

Library Sounds archive (http://sounds.bl.uk/) for high-quality recordings of

lone adult maleAlouatta roars.We selected the highest-quality recording avail-

able of an adult male for each species (see the Supplemental Experimental

Procedures). Given the very small level of within species variation in hyoid vol-

ume (Table S1), we considered these single recordings to be representative.

We extracted three roars per recording for analysis. From these, we calculated

DF and apparent VTL using published methods (see the Supplemental Exper-

imental Procedures). We could not routinely measure F0 in the roars of the

males because of the deterministic chaos typically present. However, we

were able to measure F0 in other call types in order to make a general compar-

ison with other mammals (Figure 4). We performed all acoustic analyses in

Praat version 5.3.51 [43].

Statistical Methods

We first used a general linear model to examine differences in hyoid volume

and canine length between sexes and among species and a one-way

ANOVA to examine variation in testes volume among species. Then, to analyze

the covariance between variables while accounting for the non-independence

of data points due to shared ancestry of species, we used PGLS regressions

(see the Supplemental Experimental Procedures). In the analyses that included

the mean number of males per species, we used this variable as the indepen-

dent variable and the morphological traits (i.e., hyoid volume, canine length,

and testes volume) as dependent variables. When analyzing the relationship

between testes volume and hyoid volume, DF and hyoid volume, and skull

length and hyoid volume, we assigned hyoid volume as the dependent vari-

able. In order to account for potential error in the branch lengths used, we re-

calculated all of the PGLS analyses with branch lengths of 1, and the results

did not change (Table S4). We present absolute hyoid volume and testes vol-

ume in the main text, as there was no correlation between either hyoid volume

or testes volume and male body weight in our species-level data and, there-

fore, no effect of isometric scaling. When added to the models as a covariate,

body weight accounted for very little variance and did not change our results

(see the Supplemental Experimental Procedures). We log10 transformed vari-

ables in those cases where this improved the linearity of the relationships and

performed all statistical analyses in R version 2.15.2 [44].
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Experimental Procedures, two figures, four tables, and two movies and

can be found with this article online at http://dx.doi.org/10.1016/j.cub.2015.

09.029.
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Figure S1, related to Figure 4B. Magnetic resonance imaging of two adult male howler 

monkeys. Panel (A) and panel (B) show transverse plane images of vocal fold length (traced in 

red) in Alouatta sara  and Alouatta caraya, respectively; panel (C) and panel (D) show saggital 

plane images of vocal tract length (traced in red) in Alouatta sara and Alouatta caraya, 

respectively. The white scale on the left hand side of the images is in centimetres. 

A C

B D



 

 

Figure S2, related to Figure 3D. A) Waveform (top) and spectrogram (bottom) of the 

vocalisations of a male howler monkey (Alouatta caraya). In the left hand box (incipient roar), 

F0 is approximately 50Hz. However, in the right hand box (roar), F0 is no longer measureable; 

B) Spectrograms of loud calls by male howler monkeys. The formants are labelled F 1 – 6. 
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Species A. belzebul A. caraya A. guariba A. macconnellii A. nigerrima A. palliata A. pigra A. sara A. seniculus 

Social organisation          
     Group size 7.4 ± 1.1 9.8 ± 2.1 6.2 ± 1.1 5.9 ± 1.3 - 14.8 ± 4.4 6.8 ± 1.3 4.0 ± 1.4 7.2 ± 1.2 

     Number of males 1.1 ± 0.1 2.0 ± 0.4 1.4 ± 0.7 1.0 ± 0.0 - 3.0 ± 0.5 2.1 ± 0.6 1.2 ± 0.3 1.6 ± 0.4 

     Number of females 2.4 ± 0.5 3.2 ± 1.0 2.1 ± 0.7 1.4 ± 0.6 - 6.7 ± 2.1 2.1 ± 0.4 2.3 ± 0.4 2.3 ± 0.5 

     Number of sites 5 12 11 2 - 9 6 2 6 

     Number of groups 13 117 78 6 - 342 142 180 55 

Male weight (kg)* 7.3 6.4 6.7 7.6 - 5.8 7.6 - 6.7 

Female weight (kg)* 5.5 4.3 4.6 5 - 4.4 5.7 - 5.2 

Male skull length (mm) - 124.4 ± 6.8 (18) 121.31 (1)  131.2 ± 3.3 (14) 119.8 ± 6.8 (7) - - 130.6 ± 3.9 (8) 124.1 ± 9.2 (20) 

Female skull length (mm) - 105.1 ± 1.7 (19) - 109.6 ± 2.7 (4) 103.9 ± 0.2 (3) - - 107.5 ± 3.4 (9) 108.5 ± 4.2 (14) 

Male canine length (mm)* 12.3 ± 1.6 (10) 14.2 ± 2.2 (10) 14.0 ± 1.6 (7) 15.5 ± 1.0 (13) 15.3 ± 0.9 (5) 14.0 ± 2.9 (13) 13.9 ± 2.0 (6) 14.5 ± 0.4 (6) 13.4 ± 1.7 (22) 

Female canine length (mm)* 6.8 ± 1.3 (9) 9.6 ± 1.4 (9) 7.8 ± 1.4 (10) 9.2 ± 0.7 (5) 8.4 ± 0.5 (4) 8.6 ± 1.4 (20) 9.6 ± 1.0 (9) 9.2 ± 0.6 (4) 9.2 ± 1.1 (18) 

Male hyoid Vol. (cm3) 53.2 ± 8.0 (3) 26.9 ± 6.0 (27) 47.0 ± 12.0 (19) 110.7 ± 22.9 (23) 61.3 ± 19.1 (9) 7.8 ± 1.3 (6) 55.1 (1) 60.5 ± 11.5 (8) 64.8 ± 14.1 (48) 

Female hyoid Vol. (cm3) 14.1 ± 3.6 (5) 8.6 ± 1.5 (25) 9.7 ± 1.4 (11) 18.5 ± 10.2 (7) 12.7 ± 2.6 (7) 2.0 ± 0.6 (4)  - 10.4 ± 1.4 (9) 14.0 ± 2.9 (43) 

Testes Volume (cm3) - 16.7 ± 2.9 (6) 8.3 ± 3.1 (16) - - 22.7 ± 10.9 (24) 11.3 ± 3.8 (36) - 3.5 ± 0.6 (5) 

Formant spacing (Hz) - 535 ± 25.9 477.7 ± 45.6 393.3 ± 10.4 - 580.7 ± 18.6 445.1 ± 5.5 387.7 ± 3.8 417.5 ± 7.8 

Table S1, related to Figure 3. Comparative data on howler monkey social organisation, morphology and acoustics. Mean values are 

reported ± SD and sample sizes are given in parentheses. *For sources of data see Supplemental Experimental Procedures.  



Species Call  F1 (Hz) F2  (Hz) F3  (Hz) F4  (Hz) F5  (Hz) F6  (Hz)  ∆F (Hz) VTL (cm) 

A. pigra A 340 717 1255 1635 1932 2426 449.6 38.9 

A. pigra B 321 720 1250 1488 1900 2412 439.0 39.9 

A. pigra C 367 737 1199 1594 1952 2418 446.8 39.2 

A. caraya A 401 998 1418 1918 2278 2542 506.1 34.6 

A. caraya B 434 916 1488 1928 2540 2966 556.0 31.5 

A. caraya C 398 907 1381 1898 2501 2906 543.0 32.2 

A. guariba A 426 746 1415 1625 2220 2425 474.0 36.9 

A. guariba B 390 586 1218 1486 1750 2520 434.0 40.3 

A. guariba C 410 802 1402 1694 2487 2824 525.0 33.3 

A. seniculus A 314 530 1080 1571 1924 2122 412.0 42.5 

A. seniculus B 312 530 1080 1465 1920 2337 423.0 41.4 

A. macconnellii A 65 516 744 1010 1914 2326 386.0 45.3 

A. macconnellii B 63 467 981 1250 1909 2346 406.0 43.1 

A. macconnellii C 69 498 789 1006 1930 2337 389.0 45.0 

A. sara A 371 530 878 1518 1672 2186 392.0 44.6 

A. sara B 379 515 855 1500 1636 2155 386.0 45.3 

A. sara C 380 523 827 1510 1688 2108 385.0 45.5 

A. palliata A 358 712 1573 1916 2811 3340 600.0 29.2 

A. palliata B 380 748 1244 1745 2528 3340 563.0 31.1 

A. palliata C 380 754 1497 1871 2539 3340 579.0 30.2 

 

Table S2, related to Figure 3D. Frequency of the first six formants, formants spacing (∆F) and 

apparent vocal tract length (VTL) in the three roars analysed per species. 

 

 

 

 

 

 

 

 

 



 

Species Study Site Gr. M F N  Ref. 

Alouatta belzebul Cauaxi Ranch, Para, Brazil 6.0 1.0 2.0 1 [S1] 

Alouatta belzebul Ferreira Penna Scientific Station, Para, Brazil 9.0 1.0 3.0 1 [S2] 

Alouatta belzebul Ilha de Germoplasma, Para, Brasil 7.8 1.2 2.6 5 [S3] 

Alouatta belzebul Paranaita, Mato Grosso, Brazil 7.0 1.0 2.0 1 [S4] 

Alouatta belzebul Sapé, Paraíba, Brazil 7.4 1.2 — 5 [S5] 

Alouatta caraya Brasilera Island, Chaco, Argentina 10.9 1.8 3.4 14 [S6–9] 

Alouatta caraya Carioca Island, Upper Paraná River, Brazil 10.5 2.5 4.0 2 [S10] 

Alouatta caraya Cerro dos Negros, Rio Grande do Sul, Brazil 8.4 1.6 2.4 8 [S11] 

Alouatta caraya Corrientes Biological Field Station, Corrientes, Argentina 6.8 1.5 2.5 11 [S7] 

Alouatta caraya Guaycolec Ranch, Formosa, Argentina 7.5 1.3 1.9 15 [S12] 

Alouatta caraya Isla Guascára, Corrientes, Argentina 10.2 2.7 3.8 11 [S13] 

Alouatta caraya Mutum Island, Upper Paraná River, Brazil 10.5 2.5 5.0 2 [S10] 

Alouatta caraya Nhumirim Farm, Mato Grosso do Sul, Brazil 14.0 2.0 2.0 1 [S14] 

Alouatta caraya Porto Rico Island, Upper Paraná River, Brazil 11.0 2.0 3.0 1 [S10] 

Alouatta caraya Río Riachuelo, Corrientes, Argentina 7.2 1.6 2.3 46 [S13, S15] 

Alouatta caraya Upper Parana River (left bank), Upper Paraná River, Brazil 9.7 2.0 3.7 3 [S10] 

Alouatta caraya Upper Parana River (right bank), Upper Paraná River, Brazil 11.3 2.0 4.3 3 [S10] 

Alouatta guariba Beco Xavier, Alegrete, Rio Grande do Sul, Brazil 5.0 1.0 1.0 1 [S16] 

Alouatta guariba Campo de Instrução de Santa Maria, Rio Grande do Sul, Brazil 8.0 1.0 2.7 5 [S17] 

Alouatta guariba Cantareira Reserve, São Paulo, Brazil 5.9 1.8 2.4 26 [S18, S19] 

Alouatta guariba Chácara Payquerê, Paraná, Brazil 4.6 1.0 2.0 7 [S20] 

Alouatta guariba El Piñalito Provincial Park, Misiones, Argentina 7.5 1.0 3.0 4 [S21] 

Alouatta guariba Estação Biológica Caratinga, Minas Gerais, Brazil 6.9 1.2 2.2 29 [S22, S23] 

Alouatta guariba Fazenda Barreiro Rico, Sáo Paulo, Brazil 6.0 1.0 2.0 1 [S24] 

Alouatta guariba Intervales State Park, Sao Paulo, Brazil 5.0 2.0 1.0 1 [S25] 

Alouatta guariba Parque Estadual de Itapuā, Viamao, Rio Grande do Sol, Brazil 6.0 1.0 2.0 1 [S26] 

Alouatta guariba Porto Alegre, Viamao, Rio Grande do Sol, Brazil 7.5 3.0 3.0 2 [S27] 

Alouatta guariba Santa Genebra Reserve, Campinas, Sao Paulo, Brazil 6.0 1.0 2.0 1 [S28] 

Alouatta macconnelli Anakoko Island, Venezuela 5.0 1.0 1.0 1 [S29] 

Alouatta macconnelli Nourague Station, French Guiana 6.8 1.0 1.8 5 [S30–32] 

Alouatta palliata Barro Colorado Island, Panama 19.7 3.2 8.6 73 [S33, S34] 

Alouatta palliata Cabo Blanco Absolute Natural Reserve, Puntarenas, Costa Rica 14.9 2.5 7.8 8 [S35, S36] 

Alouatta palliata Finca Taboga, Guanacaste, Costa Rica 11.5 2.4 5.5 22 [S37] 

Alouatta palliata Guanacaste, Costa Rica 21.8 3.1 10.2 11 [S38] 

Alouatta palliata Hacienda la Pacifica, Guanacaste, Costa Rica 12.7 2.1 6.6 92 [S39–41] 

Alouatta palliata Inland lowland forest, Chiriqui, Panama 18.9 3.9 8.0 8 [S42] 

Alouatta palliata La Selva Biological Reserve, Heredia, Costa Rica 11.0 3.3 4.0 7 [S43] 

Alouatta palliata Los Tuxtlas, Veracruz, Mexico 9.1 3.0 4.1 17 [S44, S45] 

Alouatta palliata Santa Rosa National, Park, Guanacaste, Costa Rica 13.8 3.1 5.7 104 [S46–49] 

Alouatta pigra Bermuda Landing, Gulf Coast, Belize 5.4 1.3 1.6 22 [S50, S51] 

Alouatta pigra Calakmul, Campeche Mexico 7.5 2.5 2.2 8 [S52] 

Alouatta pigra Community Baboon Sanctuary, Gulf Coast, Belize 5.9 1.5 2.0 74 [S53, S54] 



 

Alouatta pigra Palenque, Chiapas, Mexico 7.0 2.0 1.9 20 [S55] 

Alouatta pigra Tikal National Park, Guatemala 8.7 2.2 2.9 10 [S52] 

Alouatta pigra Yaxchilán, Chiapas, Mexico 6.6 2.8 2.0 8 [S52, S55] 

Alouatta sara Madidi National Park, Bolivia 5.0 1.4 2.5 162 [S56] 

Alouatta sara Noel Kempff Mercado National Park, Bolivia 3.0 1.0 2.0 18 [S57] 

Alouatta seniculus Estación Biológica Caparú, Vaupés, Colombia 7.0 1.0 2.0 1 [S58] 

Alouatta seniculus Finca Merenberg, Huila, Colombia 9.0 2.0 2.5 2 [S59] 

Alouatta seniculus Hato el Frio, Apure, Venezuela 7.6 1.8 3.0 5 [S60] 

Alouatta seniculus La Macarena National Park, Meta, Colombia 7.5 1.5 2.5 8 [S61] 

Alouatta seniculus Río Peneya, Meta, Colombia 5.5 1.2 1.6 29 [S62] 

Alouatta seniculus Ríos Tuparro and Tomo, Vichada, Colombia 6.3 1.9 2.4 10 [S63]  

 
Table S3, related to Experimental Procedures. Review of group size and composition for study 
species  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dependent  Independent  Branch Lengths Normal 
 

Branch Lengths = 1 
 

Average No. of males 

    R2 λ F P 
 

R2 λ F P 
 

R2 λ F P 

Male Hy. Vol. Female Hy. Vol. 0.94 0.00 97.17 <0.001 
 

0.94 0.00 97.17 <0.001 
 

0.94 0.00 97.17 <0.001 

Male Can. L. Male Body Wt. 0.00 0.00 0.00 0.95 
 

0.00 0.00 0.00 0.96 
 

0.00 0.00 0.00 0.95 

Female Can. L. Female Body Wt. 0.06 1.00 0.33 0.59 
 

0.06 1.00 0.33 0.59 
 

0.06 1.00 0.33 0.59 

Male Can. L. No. of Males 0.00 0.00 0.00 0.99 
 

0.00 0.00 0.00 0.99 
 

0.00 1.00 0.00 0.98 

Female Can. L. No. of Males 0.08 1.00 0.51 0.50 
 

0.08 0.00 0.51 0.50 
 

0.06 1.00 0.40 0.55 

Male Can. L. Male Hy. Vol. 0.15 0.00 1.07 0.34 
 

0.05 0.00 0.31 0.60 
 

0.15 0.00 1.07 0.34 

Female Can. L. Female Hy. Vol. 0.00 1.00 0.01 0.95 
 

0.01 1.00 0.08 0.78 
 

0.00 1.00 0.01 0.95 

Male Can. L. Testes Vol. 0.52 0.00 3.22 0.17 
 

0.52 0.00 3.22 0.17 
 

0.52 0.00 3.22 0.17 

Male Hy. Vol. Male Body Wt. 0.06 1.00 0.25 0.65 
 

0.06 1.00 0.25 0.65 
 

0.06 1.00 0.25 0.65 

Female Hy. Vol.  Female Body Wt. 0.00 0.69 0.02 0.90 
 

0.00 0.69 0.02 0.91 
 

0.00 0.69 0.02 0.90 

Male Hy. Vol. No. of Males 0.91 1.00 54.18 <0.001 
 

0.92 0 54.18 <0.001 
 

0.91 0.00 49.00 <0.001 

Female Hy. Vol.  No. of Males 0.89 0.00 49.13 <0.001 
 

0.89 0.00 49.13 <0.001 
 

0.90 0.00 53.28 <0.001 

Testes Vol. No. of Males 0.78 0.00 10.45 0.05 
 

0.78 0.00 10.45 0.05 
 

0.76 0.00 9.45 0.05 

Male Hy. Vol. Testes Vol. 0.93 0.00 27.00 0.03 
 

0.93 0.00 27.00 0.03 
 

0.93 0.00 27.00 0.03 

Formant Spacing Male Hy. Vol. 0.88 0.00 30.36 0.01 
 

0.88 0.00 30.36 0.01 
 

0.88 0.00 30.36 0.01 

 

Table S4, related to Experimental Procedures and Figure 3. PGLS analyses using branch lengths 

equal to 1 in the phylogeny and using mean number of males from all groups (rather than mean 

per site). Hy. = Hyoid, Vol. = Volume, Can. = Canine, Wt. = Weight, No. = Number. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplemental Experimental Procedures 

 

Hyoid species identification and volume calculation 

We analysed hyoid volume for 255 (111 females and 144 males) apparently non-pathological, 

adult howler monkeys at a number of museums. Species were identified on the basis of 

geographic location of the site of provenance of the specimens. These coordinates were uploaded 

into the QGIS [S64] software package compared with the current distribution maps of Alouatta 

species from the IUCN Red List [S65].  

Following a standardised protocol, we scanned the hyoids using either a NextEngine 

Desktop 3D laser surface scanner, with the software ScanStudio HD Pro Version 1.3.2, or a 

Minolta Vivid 910 laser surface scanner, with the software Geomagic Studio. We scanned the 

hyoids at the highest SD resolution, in macro mode. Scans were composed of 12 individual scan 

surfaces comprising a 360 degree rotation with ten viewpoints, and two single scans of the 

remaining uncaptured surfaces. We conducted initial scan trimming and alignment in ScanStudio 

HD. Subsequently we perfected the alignment of individual scan surfaces in Rapidform XOR 

with the Mesh Build-up Wizard, the Best-Fit Aligning function, and Accuracy Analyzer tool. 

Owing to the difficulty in capturing the internal surface of the hyoid with the 3D scanner, we 

calculated volume from the external surface. Thus, any part of the internal surface of the hyoid 

that had been captured was trimmed away leaving just the external surface. Next, we fused the 

individual scan faces using the Merge function, and converted the model to a solid mesh in order 

to calculate the volume. We filed any holes in the mesh (due to the state of preservation of the 

hyoid) manually using the Fill Holes function and used the settings that best created continuity in 

the curvature of the surface. Finally, we applied a “Global Re-mesh” to provide a relatively flat 



 

closing to the posterior opening of the basihyal. We then calculated the volume of the final 

closed hyoids automatically in the software. Finished (closed) hyoid models were composed of 

between approximately 7,000 and 250,000 individual poly vertices, or 15,000 to 500,000 poly-

faces.  

 

Micro computed tomography (µCT) validation of volume calculations 

In order to test the accuracy of the surface scan estimates of hyoid volume from the external 

surface of the hyoid, relative to the actual internal volume of the hyoid, we obtained µCT scans 

of a subsample of 4 hyoids. We performed µCT scanning using a Nikon Metrology HMX ST 225 

at the Natural History Museum, London. We scanned the samples using a tungsten reflection 

target, at an accelerating voltage of 210 kV and current of 190 µA using a 500 ms exposure time 

(giving a scan time of 25 minutes). We used copper filters between 2.5 and 4 mm, depending 

upon the density of the hyoids. Filtering reduces the number of artifacts in the data usually 

produced by higher density material such as scattering and beam hardening. Higher density 

objects require greater levels of filtering. Over the course of a scan we took 3,142 projections 

over a 360° rotation of the specimen. The voxel size of the resulting datasets ranged from 70 – 

111 µm depending upon the size of the specimen, as the resolution is determined by geometric 

magnification. We reconstructed the 3D volumes using the Feldkamp back-projection algorithm 

[S66] through CT Pro (Nikon Metrology, Tring, UK) and exported TIFF stacks using VG Studio 

Max (Volume Graphics GmbH, Heidelberg, Germany).  

In Avizo Fire 6.3, we constructed isosurfaces of the hyoids by thresholding the scans. We 

imported the isosurfaces into Rapidform XOR, where we cropped away the external surface of 

the hyoid, leaving only the interior surface. We carried out the same procedures of hole filling 



 

and re-meshing, as described above, to create a counterpart solid model of the internal volume of 

the hyoid. In the case of one hyoid, a laser scan was not possible (as the hyoid was articulated 

with the skeleton) and thus we used the µCT scan to create both the internal and external volume 

models. The results of the comparison show that the volume based on the external surface had an 

error of 5.1 ± 1.4% compared with the true internal volume and the volumes calculated using the 

two different methods were highly correlated (R2 = 0.99, P < 0.001). The volume based on the 

external surface consistently overestimated the internal volume. An overestimate was expected, 

and thus this falls very closely within the expected bounds, and also suggests the procedures for 

closing the hyoid are not creating substantial variation. It can be assumed therefore that the errors 

in volume arising from the lower resolution laser scan approach, and in the method applied to 

create a solid model, are subject to ca. 5% error from true properties. However, we would expect 

this to be consistent across species and sexes.  

 

Testes volume 

We used new and published data to calculate mean ± SD testes volume per species. Only adult 

males were considered in the analyses. Given the technical and logistical challenges of gaining 

these data, we were only able to report testes volume for 5 species (Table S1). The published 

data were used from A. pigra [S67], A. palliata [S67], and A. caraya [S68]. We collected new 

data for A. guariba at the Centro de Pesquisas Biológicas de Indaial, Brazil and for A. seniculus 

at Cologne Zoo, Germany and Parque Zoológico Santa Fe, Colombia. We followed the methods 

used by Kelaita et al [S67] to determine testicular volume. Briefly, we measured the width and 

length of each testicle, excluding scrotal skin folds, to the nearest millimeter using Mitutoyo 

Digital Calipers. We then used the following formula to calculate the volume of a prolate sphere: 



 

πLW2/6; where L is length and W is width. We used total testicular volume (sum of left and right 

testes) to account for any variability that exists between the left and right testes and to have data 

that are comparable to results presented in the literature.  

 

Canine length 

Raw data on canine length for A. belzebul, A. caraya, A. guariba, A. palliata, A. pigra and A. 

seniculus was kindly provided by J. Michael Plavcan from museum specimen. Methods used to 

collect these data have been reported elsewhere [S69]. Following these methods, we collected 

additional data on canine length for all remaining species from museum specimens and report the 

average length of left and right canines for males and females (Table S1). 

 

Body weight 

Data on body weight of wild males and females for each species were taken from a review of 

body size in primates [S70], with two exceptions. For Alouatta pigra, a more recent paper [S67] 

offered a much larger sample size, and for Alouatta macconnellii data were not reported in the 

original review, so they were taken from a more recent review paper [S71]. Data on body weight 

were not available for Alouatta sara or Alouatta nigerrima (Table S1). 

 

Skull length 

Where possible, we collected matching data on skull length for the hyoids analysed in the data 

set. We measured maximum skull length [S72] to the nearest mm using digital callipers. The 

sample consisted of 117 skulls with matching hyoids, representing 6 species (Table S1).  

 



 

Group size and composition 

We compiled data on group size and composition for each of the howler monkey species studied 

(Table S2). Much of the data came from a review paper [S71], but we complemented these data 

with as many additional studies as possible for each species (Table S4). We located additional 

records using Latin binomials as keywords in searches of Web of Science, Google Scholar and 

PrimateLit. Data on group size and composition were not available for Alouatta nigerrima. 

Given that local environmental factors, such as variations in climate and vegetation, may affect 

group size and composition within species, we calculated mean values per study site and then 

took the average across study sites (Table S2). We also ran the analyses using the mean values 

for all groups (rather than sites), and the results did not change (Table S5).  

 

Net Primary Productivity (NPP) 

We downloaded NPP data for 2013 from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on the Terra satellite launched by NASA [S73]. These data are freely available from 

the Numerical Terradynamic Simulation Group (NTSG) (http://www.ntsg.umt.edu). The data 

give an estimate of spatial variability in the amount of atmospheric carbon that is fixed by plants 

and, hence, a good estimate of forest productivity. Using the “Point Sampling Tool” in QGIS 

[S64], we calculated the annual NPP for the location of provenance of each hyoid specimen 

(Figure S2). 

 

Calculation of theoretical fundamental frequency 

The fundamental frequency (F0) of vocal fold vibration can be explained by using a simple 

piano-string model [S74]. In this model, vocal fold length is inversely and linearly related to F0 



 

and can be approximated using the equation F0 = (1/2L) x (√ (σ/ρ)), where L is vocal fold length 

in m, σ is equal to the stress applied to the vocal folds in kPa, and ρ is the tissue density of the 

vocal folds, which is approximately equal to 1.02 g/cm3 [S75, S76]. If we assume that there is no 

stress on the vocal folds during sound production [S74, S77, S78] and apply the equation to the 

vocal fold length of howler monkeys (ca. 40 mm), then we could predict that howler monkeys 

may produce an F0 as low as 15 Hz.  

 

Acoustic analyses and calculation of apparent vocal tract length  

We used bioacoustics methods to analyse the acoustic effect of variation in hyoid volume among 

male howler monkeys. We concentrated on males, because: (a) they howl more frequently than 

females, including vocalising in the context of male-male competition; (b) comparative acoustic 

data are much more widely available for males; and (c) the variation in hyoid volume is much 

greater among males.  

 We searched the Macaulay Library (www.macaulaylibrary.org) and the British Library 

Sounds archive (www.sounds.bl.uk) for high quality recordings of lone adult male roars. Many 

recordings were available and we screened over 300 for quality, but only a very small number 

were of high enough quality for reliable formant analyses. Therefore, we selected the highest 

quality recording of an adult male for each species. Given the very small level of within species 

variation in hyoid volume (Table S1), we considered these single recordings to be representative. 

From these recordings, we extracted three “roars” [S79] per recording for analysis. 

The howler monkey roar is characterised by an introductory phase, which has classically 

been termed as an “incipient roar” [S79]. This section of the call contains some tonal segments 

and, as such, fundamental frequency can be measured in some high quality recordings. However, 



 

incipient roars generally build in volume and grade into full roars, which are characterised by 

deterministic chaos and, therefore, lack periodicity and fundamental frequency may not be 

measured, even in high quality recordings (Figure S2). Therefore, though we could not routinely 

measure F0 in the roars of the males (because of the deterministic chaos typically present), we 

were able to measure F0 in other call types in order to make a general comparison with other 

mammals (Figure 4).  

We extracted formant frequencies using the PRAAT 5.3.47 sound analysis package [S80]. 

The lowest frequency values of the first six formants were extracted using linear predictive 

coding (LPC) via the ‘LPC: To Formants (Burg)’ command in PRAAT. We did not attempt to 

measure formants higher than the sixth formant because these frequency components were often 

poorly defined. To measure the formants, we used the following analysis parameters: time-step, 

0.01 s; maximum number of formants, 8-10; maximum formant frequencies, 3500–4000 Hz; 

window of analysis, 0.1 s. To check that the program was accurately tracking the frequency of 

formants, we compared the outputs with visual inspections of spectrograms and power spectra 

using cepstral smoothing at 200Hz. In order to ensure the reliability of our results, a bioacoustics 

expert with experience in formant analysis (D.R.) repeated the analyses blind to the species 

names. The results obtained by the two independent analysts were highly consistent. 

The output of this analysis was transferred into a spreadsheet, and formant values were 

plotted against time and frequency and superimposed onto a narrow band spectrogram of each 

call. Spurious values were deleted, missing values were linearly interpolated and octave jumps 

were corrected for. For the first six formants, we then plotted the observed minimum frequency 

value of each formant against (2i – 1)/2 increments of the formants spacing, as predicted by the 

model of a vocal tract, approximated as a straight uniform tube closed at one end (the glottis) and 



 

open at the other (the mouth) [S81]. Then, we fitted a linear regression line through the set of 

observed values, applying an intercept equal to 0 [S82]. Since Fi = ((2i – 1)/2)∆F, the slope of the 

regression gives the best estimate of ∆F for our vocal tract model. The frequency of each of the 

first six formants, for each of the 3 loud calls analysed per species, are given in Table S2. There 

was very little variation in ∆F across the three roars within species, so we took the average ∆F 

across the three roars for each species. In the final step, we deduced the estimated apparent VTL 

directly from the average ∆F by using the equation VTL = C/2(∆F), where c (350 m/s) is the 

approximate speed of sound in the warm humid air of a mammalian vocal tract [S74].  

 

Computed tomography (CT) and magnetic resonance imaging (MRI) of whole animals  

We performed computed tomography (CT) and magnetic resonance imaging (MRI) on the 

cadavers of two adult male howler monkeys of different species (Alouatta sara and A. caraya) 

and one adult male spider monkey (Ateles fusciceps). We chose to examine the Ateles specimen 

in order to demonstrate the simple larynx and hyoid, typical of most primates, in this closely 

related taxon, and to highlight the fact that the Alouatta hyoid and larynx are highly modified, 

derived traits. The two howler monkey species were chosen to represent the greatest extremes of 

hyoid volume possible, given the available material. We carried out both CT and MRI at the 

University of Veterinary Medicine, Vienna. 

We performed CT examination using a Somatom Emotion multislice scanner (Siemens 

AG, Munich, Germany). The specimens were placed in ventral recumbency, and scanned, 

depending on body size, with the following parameters: 110 – 130 kV, 94 – 174 effective mA 

and 0.75 mm thick axial slices. We used Avizo Fire 6.3 and Somaris/5 Syngo CT2009E 

(Siemens AG, Berlin) to generate multiplanar reconstructions and 3D surface models.  



 

We performed MRI examination using a Magnetom Espree 1.5 Tesla Open Bore Design 

MR-System (Siemens AG, Erlangen, Germany) using a 4-canal Neck-Matrix-coil in combination 

with a 24-canal Spine-Matrix-coil (Siemens AG, Medical Solutions, Erlangen, Germany). 

Specimens were placed in ventral recumbency and scanned using the following sequences: T2-

weighted 3D Turbo Spin Echo (TSE) [Repetition Time (TR): 1.500, Echo Time (TE): 225, Echo 

Train Length (ETL): 79, Band Width (BW): 476, Flip Angle: 130°, Slice Thickness (SL): 1 mm, 

Matrix: 256 x 250, Field of View (FoV): 250*250 mm], T1-weighted 3D Gradient Echo fast low 

angle shot [TR: 9.67, TE: 4.78, BW: 199, Flip Angle: 18.6, SL: 1 mm, Matrix: 512 x 512, FoV: 

250*250 mm] and a Proton -weighted (PD) TSE [TR: 2.510, TE: 22, SL: 2 mm, ETL: 9, BW: 

181, Flip Angle: 150, Matrix: 384 x 384, FoV: 250 x 250 mm]. In all cases the scanning-

direction was sagittal. The phase encoding direction for the T2- and PD-weighted sequence was 

head-feet and for the T1-weighted anterior-posterior. We used Osirix v 5.8 [S83] to generate 

reconstructions and carry out anatomical measurements.  

 

Data sources for body weight, vocal fold length and fundamental frequency 

Data on body size and fundamental frequency (Figure 4a) were taken from Herbst et al. [S78]. 

Data on vocal fold length and fundamental frequency (Figure 4b) were from: rat [S84, S85], 

squirrel monkey [S86, S87], domestic cat [S74, S88], rhesus macaque [S75, S87], human[S74], 

sheep [S89], saiga antelope [S90], pig [S89, S91], red deer [S81, S92], cow [S89, S93], reindeer 

[S94], howler monkey – present study, Mongolian gazelle [S95–97], muskox [S98], tiger [S99, 

S100], elephant [S78] and the figure was adapted from [S77]. 

 

Statistical methods 



 

We first used a general linear model to examine differences in hyoid volume and canine length 

between sexes, among species and the interaction between sex and species, and a one-way 

analysis of variance (ANOVA) to examine variation in testes volume among species. Then, to 

analyse the covariance between variables, while accounting for the non-independence of data 

points due to shared ancestry of species, we conducted phylogenetic generalised least squares 

(PGLS) regressions with a Brownian motion model of evolution, based on a published molecular 

phylogeny of howler monkeys [S101] (Figure 2). These models use maximum-likelihood 

methods to estimate Pagel`s lamda (λ) [S102], which can be used to assess the degree of 

phylogenetic signal in the PGLS and varies between 0 (phylogenetic independence) and 1 

(species` traits covary in proportion to their shared ancestry). We used branch lengths and 

splitting dates from the published molecular phylogeny [S101]. Because A. nigerrima was not 

included in the published phylogeny, we used an additional molecular and karyotypic analysis of 

the genus, which shows that this species is more closely related to A. macconnellii than any other 

[S103]. We therefore positioned this species accordingly in the phylogeny for visual purposes 

(Figure 2a), but A. nigerrima was not used in any PGLS analyses. In order to account for 

potential error in the branch lengths used, we recalculated all of the PGLS analyses with branch 

lengths of 1 and the results did not change (Table S4). We present absolute hyoid volume and 

testes volume in the main text, as there was no correlation between either hyoid volume or testes 

volume and male body weight in our species level data, and, therefore, no effect of isometric 

scaling. When added to the models as a covariate, body weight accounted for very little variance 

and did not change our results (see below). The regression lines of the linear models and the 

regression lines of the full PGLS models had the same intercept and slope in all cases. Therefore, 



 

only one line is presented in the figures. We log10-transformed variables in those cases where this 

improved the linearity of the relationships. 

In the analyses that included the mean number of males per species, we used this variable 

as the independent variable and the morphological traits (i.e., hyoid volume, canine length and 

testes volume) as dependent variables. When analysing the relationship between testes volume 

and hyoid volume, ∆F and hyoid volume, and skull length and hyoid volume, we assigned hyoid 

volume as the dependent variable.  

Where possible, we also used a more complete data set, rather than relying on average 

species level data. Firstly, in order to test the “environmental adaptation” hypothesis, we used 

general linear mixed models (GLMM) to evaluate the effect of NPP on hyoid volume using 

matching data for NPP and hyoid volume from all 255 hyoids. We specified species as a random 

factor in the model to account for the non-independence of species and tested the model 

including NPP against a null model (not including NPP) using ANOVA. In order to account for 

phylogenetic effects, we also carried out a PGLS regression using mean NPP values per species 

as the independent variable. Secondly, we used matching data on skull length and hyoid volume 

for 117 individuals, and performed a GLMM using species and sex as random factors in the 

model and hyoid volume as the dependent variable. We then tested this model against a null 

model (not including the variable skull length) using ANOVA. We performed all analyses in the 

statistical package R version 2.15.2 [S104]. 

 

Supplemental Results 
 
 

The relationship between canine length and other traits 

 



 

At the species level, canine length was not correlated with body weight (male PGLS: R2 = 0.00, λ 

= 0.00, F(1,5) = 0.00, P = 0.95; female PGLS: R2 = 0.06, λ = 1.00, F(1,5) = 0.33, P = 0.59), the 

number of males per group (male PGLS: R2 = 0.00, λ = 0.00, F(1,6) = 0.00, P = 0.99; female 

PGLS: R2 = 0.08, λ = 1.00, F(1,6) = 0.51, P = 0.50), hyoid volume (male PGLS: R2 = 0.15, λ = 

0.00, F(1,6) = 1.07, P = 0.34; female PGLS: R2 = 0.00, λ = 1.00, F(1,7) = 0.01, P = 0.95) or testes 

volume (PGLS: R2 = 0.52, λ = 0.00, F(1,3) = 3.22, P = 0.17).  

 

Adding body weight as a covariate 

 

After adding body weight as a covariate, the number of males per group was still a significant 

predictor of log10 hyoid volume in both males (full PGLS model: R2 = 0.85, λ = 0.00, F(2,4) = 

11.25, P < 0.05; number of males: estimate ± SE = -0.47 ± 0.10, t = -4.71, P < 0.01; male body 

weight: estimate ± SE = 0.12 ± 0.15, t = 0.81, P = 0.46) and females (full model: R2 = 0.92, λ = 

0.00, F(2,4) = 24.23, P < 0.01; number of males: estimate ± SE = -0.44 ± 0.06, t = -6.85, P < 

0.005; female body weight: estimate ± SE = -0.002 ± 0.09, t = -0.03, P = 0.98). Similarly, testes 

volume was still a significant predictor of hyoid volume (full PGLS model: R2 = 0.97, λ = 0.00, 

F(2,2) = 34.55, P < 0.05; testes volume: estimate ± SE = -3.02 ± 0.36, t = -8.31, P = 0.01; male 

body weight: estimate ± SE = -8.64 ± 5.40, t = 1.59, P = 0.25) and log10 male hyoid volume was 

still a significant predictor of formant spacing (full PGLS model: R2 = 0.97, λ = 0.00, F(2,3) = 

43.41, P < 0.01; male hyoid volume: estimate ± SE = -172.44 ± 19.45, t = -8.86, P < 0.05; male 

body weight: estimate ± SE = -32.15 ± 15.03, t = -2.13, P = 0.12) after adding body weight as a 

covariate. Although the fixed effect of the number of males was still a significant predictor of 

testes volume after adding body weight as a covariate (estimate ± SE = 13.21 ± 3.06, t = 4.3, P < 



 

0.05), the overall model was only borderline significant (full PGLS model: R2 = 0.91, λ = 0.00, 

F(1,3) = 9.58, P = 0.09) because of the small sample size and the noise introduced by body weight, 

which did not explain any of the variation (estimate ± SE = -6.25 ± 3.79, t = -1.65, P = 0.24).  
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