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1 GC Content Expression Models

Supplementary Figure 1 illustrates the 7 GC content expression models that ship with
Polyester.

2 Positional Bias Models

For reference, we reproduce Supplementary Figure 3 of [4] here.

3 Error Models

Supplementary Figures 1-5 illustrate the error models available in Polyester, other than the
one derived from TruSeq SBS Kit v5-GA chemistry, Illumina Genome Analyzer II, mate 1
(shown in Figure 2 in the main manuscript). In each of Supplementary Figures 1-5, separate
panels are shown for each possible true reference nucleotide. Each panel illustrates the
probability (y-axis) of mis-sequencing that reference nucleotide in a given read position (x-
axis) as any of the 3 other nucleotides, or as an ”N” (indicating an ”unknown” nucleotide
in the read). As expected, error probabilities increase toward the end of the read, and mate
2 error probabilities are higher than mate 1. The error models for Illumina Sequencing Kit
v4 show some interesting spikes at certain read positions, which were also observed in the
original analysis of this data [5] and may indicate a technical artifact. We include these
models in case it is of interest to simulate reads with these profiles.

4 Coverage Profiles

Figure 3 in the main manuscript illustrates a typical coverage profile for two simulated
data sets and the GEUVADIS data set. Here we show a transcript whose coverage profile
was unusual in the GEUVADIS data set, so the simulated reads showed coverage profiles
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Figure 1: GC content models for expression included in Polyester. For each of
the 7 GEUVADIS replicates (Section 2.2), loess curves were fit to estimate per-transcript
deviations from overall mean count based on GC content. In each of these plots, each point
represents a transcript, with its GC content percent on the x-axis and its read count on
the y-axis. As expected, transcripts with high and low GC content tend to be measured as
underexpressed [2, 6, 1]. These models were fit and are illustrated on the log2 scale: in other
words, we added 1 to all transcript counts (to avoid calculating log(0)), log-transformed
the counts, then centered the log counts around the mean of all of the log counts. The
log-transformation is automatically incorporated in Polyester when adding GC bias.

2



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Fragment position in transcript (percent)

P
ro

ba
bi

lit
y 

of
 s

el
ec

tin
g 

fr
ag

m
en

t

uniform
rnaf
cdnaf

Figure 2: Positional bias models implemented in Polyester. The figure aims to replicate
Supplementary Figure 3 in [4]. Fragment selection across a transcript can be biased based
on where the fragment falls in the transcript, as illustrated by the figure. A bias based on
RNA fragmentation (rnaf) is illustrated in red, while a bias based on cDNA fragmentation
(cdnaf) is illustrated in blue. The gray line illustrates the uniform, unbiased model, where
fragments are equally likely to have originated from any postition in the transcript.
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Figure 3: Empirical error model derived from TruSeq SBS Kit v5-GA chemistry,
using Illumina Genome Analyzer IIx, for mate 2 of a paired-end read.
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Figure 4: Empirical error model derived from TruSeq SBS Kit v5-GA chemistry,
using Illumina Genome Analyzer IIx, for a single-end read.

5



0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

Read Position

E
rr

or
 P

ro
ba

bi
lit

y

A

●

●

●

●

C
G
T
N

0 20 40 60 80 100
0.

00
0.

01
0.

02
0.

03
0.

04
Read Position

E
rr

or
 P

ro
ba

bi
lit

y

C

●

●

●

●

A
G
T
N

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

Read Position

E
rr

or
 P

ro
ba

bi
lit

y

G

●

●

●

●

A
C
T
N

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

Read Position

E
rr

or
 P

ro
ba

bi
lit

y

T

●

●

●

●

A
C
G
N

Figure 5: Empirical error model derived from Illumina Sequencing Kit v4, for
mate 1 of a paired-end read.
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Figure 6: Empirical error model derived from Illumina Sequencing Kit v4, for
mate 2 of a paired-end read.
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Figure 7: Empirical error model derived from Illumina Sequencing Kit v4, for a
single-end read.
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Figure 8: Unusual simulated coverage profiles. The bottom panel of this graph illus-
trates the single isoform of GTF2H5, along with coverage profiles (y-axis) of one replicate
from the GEUVADIS data set (black), a data set simulated without positional bias (blue),
and a data set simulated with the rnaf positional bias model (pink).

that were quite different from the GEUVADIS read coverage profile. This is likely to have
occurred because the GEUVADIS data set did not seem to have contained reads from the
downstream end of the longest exon of this transcript.

There were 70 coverage plots total generated from this experiment (10 genes, 7 replicates).
One is available as Figure 3 in the main text, another is Supplementary Figure 8, and the rest
are available for download at http://figshare.com/articles/Coverage_Plots/1225636.

5 FPKM correlations

Correlations between transcript-level FPKM estimates estimated for simulated and real data
were generally positive. The correlation was very strong when fragments were generated
uniformly along the transcript, but weaker when positional bias was added.
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Figure 9: Correlations between estimated FPKM values in the GEUVADIS data
set compared to simulations, with and without postional bias. Each box in the
plot contains 7 correlation measurements, one for each replicate in the study, each of which
was obtained by calculating the correlation between FPKM estimates from simulated and
GEUVADIS data for the 15 transcripts in the study. Correlations for the simulation with
positional bias are shown on the left, and for the simulation with uniform fragmentation (no
positional bias) on the right. Correlations were all positive, but were weak in the simulation
with bias and very strong in the simulation without bias.
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Figure 10: Linear relationship between total number of reads in experiment and
computational time required. Y-axis represents average elapsed time over 5 replications.

6 Time and Memory Complexity

We ran several benchmarks on Polyester version 1.2.2 to empirically demonstrate the time
and memory complexity claims in Section 3.3 of the main manuscript.

The first set of benchmarks shows that Polyester’s main simulation function’s computa-
tion time requirement scales approximately linearly with the total number of reads in the
simulation (Supplementary Figure 10). The elapsed time was calculated as an average over
5 calls to the simulate experiment function. One replicate was simulated, and reads were
generated approximately equally across 918 transcripts.

The second set of benchmarks shows that simulate experiment() also scales linearly in
regards to computational time as the total number of replicates in the experiment increases
(11). For this benchmarking analysis, for each replicate, each of 918 transcripts had a baseline
mean of 300 reads; the true number of reads simulated from the transcript was drawn from
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Figure 11: Linear relationship between number of replicates in experiment and
computational time required. Y-axis represents average elapsed time over 5 replications.

a negative binomial distribution with size parameter 100. No differential expression was
simulated for this benchmarking exercise. Like the first set of benchmarks, the elapsed time
on the graph was calculated as an average over 5 calls to simulate experiment.

A third set of benchmarks illustrates that simulating positional bias does not add ad-
ditional computational time burden (Supplementary Figure 12). In the experiment that
generated the timings shown in Supplementary Figure 12, we used 918 transcripts and all
default settings (baseline mean of 300 reads per transcript, negative binomial size parameter
of 100 for all transcripts, uniform error model, etc.) and simulated reads for one replicate.
We repeated this five times each for no positional bias, rnaf bias, and cdnaf bias. There is
no noticeable change in elapsed time for either the rnaf or cdnaf bias models.

Finally, a fourth set of benchmarks shows that using an empirical error model adds a
considerable time burden to a simulation (Table 1). Using 918 transcripts and all default
parameters (mean of 300 reads per transcript with size=100, no positional bias, etc.) and
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Figure 12: Effect of positional bias on computational time. Adding positional bias to
the simulation may slow it down very slightly.
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Error Model Rep # Elapsed Time (sec)
Uniform 1 8.7

2 8.4
3 8.6
4 8.5
5 8.6

Empirical (Illumina v5) 1 244.1
2 230.0
3 246.4
4 247.5
5 239.9

Table 1: Computational time estimates comparing uniform error model to empirical Illumina
v5 error model.

repeating the benchmark 5 times for both the uniform error model and the empirical Illumina
v5 error model, we find that using the illumina5 error model increases the time required
by a factor 27-29. This is not surprising, as the empirical error model is much more detailed
and is implemented as an iteration over the bases in the simulation in pure R code rather
than a vectorized function. It is a focus for improvement in future versions of the software.

All timing benchmarks were calculated using the benchmark function in the rbenchmark
package in R [3].

An analysis of the maximum amount of memory used by the simulation shows that
the amount of memory used scales linearly with the number of reads per replicate in the
simulation (Supplementary Figure 13). For this analysis, we ran the same code as we did
for the first set of benchmarks, but with a different seed and only doing one replication per
scenario (instead of averaging the memory use over five replications). For this figure, we
only varied the number of reads simulated for a one-replicate experiment, but replicates are
simulated sequentially so we would expect the same pattern if the experiment had multiple
replicates and the (maximum) number of reads per replicate were varied.

We also show that memory use is arguably constant in the number of replicates in the
experiment (Supplementary Figure 14). These memory estimates were gethered using the
same code as in the second set of benchmarks, but again with a different seed and only doing
one replication per scenario instead of five. The code for the scenarios in Supplementary
Figures 13 and 14 was run on a Linux cluster node in order to take advantage of the Sun Grid
Engine scheduling system, which allowed all the scenarios to run in parallel (though there
was no paralellization within single scenarios) and automatically recorded the maximum
amount of memory used by a single scenario.
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Figure 13: Linear scaling of max memory usage as number of reads in simulation
increases.
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Figure 14: Max memory usage as number of replicates in simulation increases. The
code is written so that replicates in the simulation are processed sequentially, so Polyester
should be O(1) in memory as the number of replicates increases. Here we see the max
memory use may increase slightly as the number of replicates increases, but the increase is
very small, and we see that doubling the number of replicates in the simulation certainly
does not double the memory use.

16



References

[1] Yuval Benjamini and Terence P Speed. Summarizing and correcting the GC content bias
in high-throughput sequencing. Nucleic Acids Research, page gks001, 2012.

[2] Kasper D Hansen, Rafael A Irizarry, and WU Zhijin. Removing technical variability
in RNA-seq data using conditional quantile normalization. Biostatistics, 13(2):204–216,
2012.

[3] Wacek Kusnierczyk. rbenchmark: Benchmarking routine for R, 2012. R package version
1.0.0.

[4] Wei Li and Tao Jiang. Transcriptome assembly and isoform expression level estimation
from biased RNA-seq reads. Bioinformatics, 28(22):2914–2921, 2012.

[5] Kerensa E McElroy, Fabio Luciani, and Torsten Thomas. GemSIM: general, error-model
based simulator of next-generation sequencing data. BMC Genomics, 13(1):74, 2012.

[6] Davide Risso, Katja Schwartz, Gavin Sherlock, and Sandrine Dudoit. GC-content nor-
malization for RNA-seq data. BMC Bioinformatics, 12(1):480, 2011.

17


