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Here we derive the differential equations governing the per cell quota of CRISPR spacer contents.  

Active Phage Protospacer Quota Per Infected Cell  
Because we track the per capita quotas of protospacer contents per infected cell, any expression for 
its derivative has to account for the current spacer density in the infected cell population, the influx 
due to the newly infected cells, weighted by their corresponding population sizes (refer Fig. 3).  At 
any time instant , the total amount (density) of phage protospacers associated with the entire 
infected population is . The total amount of newly released phage protospacers is given by 
the product of total amount of infections and the expected amount of native phage protospacers per 
phage as . The total amount of protospacers leaving the infected pool is 

proportional to the removal rate of infected cells and is equal to . For any small time 

interval  then, we can write  as: 
 

, 

 
where the denominator is the expected infected cell density at time . Thus  is precisely 
the average protospacer content per infected cell at time . In a straightforward fashion, when 

𝑞 𝑡 ≠ 0, we can compute the limit 
 
to obtain our derivative:  

 

   

We now follow a similar procedure to compute the average spacer contents in the free and infected 
cell populations.  
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CRISPR Spacer Quota Per infected Cell 
We derive the derivatives for the per capita quotas of CRISPR spacer content using the same 
approach as above. Briefly, new additions to the active and self-targeting spacer content associated 
with infected cell population can occur upon infection due to acquisition reactions. In addition, they 
are also inherited from free cells that are infected. Inactive spacers in the infected cell population, 
however, can only be inherited. Furthermore, we will also account for the removal of spacers due to 
CRISPR kinetics through a spacer deletion parameter .  
 
Given the current phage protospacer levels available per infected cell ( ) for spacer acquisitions 
and the acquisition rate of , the total amount of new active spacer acquisitions is computed as 

. Similarly, given the current genomic protospacer density of , the total amount of newly 

acquired self-targeting spacer content is given by . For a given spacer type, the total inflow 
due to inheritance is determined by the amount of infections ( ) and the spacer density of that 

type in the free cell population (e.g.,  for active spacers). Finally, all three spacer types 
within an infected cell are also removed at a rate proportional to the removal rate of infected cells and 
spacer deletion. Taken together this results in the following equations for the different spacer contents 
at time :  
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Computing , , and , for 𝑞 𝑡 ≠ 0, we 

obtain the corresponding derivatives as: 
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CRISPR Spacer Quota Per Free Cell  
New additions to the self-targeting spacer content in free cells is determined by the differential 
activation rate of acquisition in free cells ( ), and the current available pool of genomic 
protospacers . All three spacer types are inherited from the infected cells at a rate proportional 
to the amount of infected cells undergoing immunity. Further, at a rate determined by per protospacer 
spacer mutation rate , mutated phage protospacers can switch to being native (and vice versa); at 
this rate then, this effect is also reflected in the corresponding CRISPR content as the transition of 
inactive spacers to active states (and vice versa). For simplicity, we do not consider the difference in 
the rates of forward and backward mutation rates. Finally, all three spacer types within a free cell 
replicate at a rate proportional to the effective free cell duplication rate, and are removed at a rate 
proportional to the removal rate of free cells and spacer deletion (which, as mentioned before, is 
scaled by the CRISPR activation rate ). Taken together this results in the following equations for 
average spacer contents at time  (for clarity, we ignore mentioning time dependence explicitly): 
  

  

   

 

 

 

 

Calculating , , and , 𝑝 𝑡 ≠ 0, we 

obtain the corresponding derivatives as: 
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