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Figure S1, related to Figures 1 and 3. Models for palindromic duplication by break-
fusion-bridge cycles. 



Figure S2, related to Figure 1. Increased GCR rate in the rfa1-t33 mutant is not due to a 
recombination defect.  
(A) GCR rates for the indicated genotypes. The rates shown for rad51Δ and rad51Δ sae2Δ 
are the average of three and four independent trials, respectively. Error bars indicate 
standard deviation.  
(B) Recombination rates for wild type and rfa1-t33 strains. The rates shown are the average 
of three independent trials. Error bars indicate standard deviation. 
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Figure S3, related to Figure 2 and Table 1. Schematic of the PCR assay used to 
characterize GCRs and CGH of clones with >2-fold amplification of Ch V sequences.  
(A) Overlap PCR defines the breakpoint between CAN1 and PCM1 then random priming 
PCR was used to amplify the junction. PCR fragments were sequenced and aligned to the 
reference genome to define the sequences involved in the rearrangements.  
(B) A 10-kb region adjacent to the breakpoint is present in 4 copies.  
(C) A 4-fold amplification of a 48 kb region adjacent to the breakpoint. The clone shown 
represents a mixed population of two clones with the same rearrangement on Ch V 
associated with distinct secondary rearrangements involving Ch VII and Ch XII (determined 
by clonal analysis). 
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Figure S4, related to Figures 1 and 3. Inversion duplications are recovered from mre11-
H125N derivatives. 
(A) PFGE of independent GCR clones. 
(B) Representative microarrays from mre11-H125N clones. 
(C) Representative microarrays from and rfa1-t33 mre11-H125N clones. 
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Figure S5, related to Figure 3. Model for generation of a dicentric chromosome by 
template switching between inverted repeats at a stalled replication fork. a and a’ 
represent short inverted repeats 



Table S1, related to Figure 3. Inverted repeats initiate inverted duplications 
    
Relevant 
genotype Inverted Repeat Sequence1 No. of 

Events 
Ch V 

coordinate  
sae2Δ  CCCAGGcaCCTGGG 1 

32,659 
 TATATtTCTGttcCAGAtATATA 1 33,588 
 GAGTTTctcaAAACTC 1 35,581 
 TAA - GCCACtgcaGTGGCaTTA 1 42,134 
 CGCCActcccgcagtccTGGCG 1 42,109 

sae2Δ rfa1-t33 TTCcaGGGCAAaagtgaTTGCCCaaGAA 4 32,915 
 CACTTgccagtAAGTG 1 34,006 
 CTCgTGGGcgctCCCAtGAG 1 41,663 
 TATATtTCTGttcCAGAtATATA 1 33,588 
    
1 Bases in lower case represent mismatches within the inverted repeat, and bases in bold 
lower case indicate the spacer between inverted repeats. 
	
  



Supplemental Experimental Procedures 

 

Media, growth conditions and yeast strains. Rich medium (yeast extract-peptone-dextrose, 

YPD) and synthetic medium (SC) were as described previously (Amberg, 2005).  Selection for 

GCR events was performed using synthetic complete medium without arginine containing 

1mg/mL 5-fluoroorotic acid (5-FOA) and 60µg/mL cananvanine (Can) as described (Chen and 

Kolodner, 1999). Yeast strains are derivatives of RDKY3615 (MATa ura3-52 leu2Δ1 trp1Δ63 

his3Δ200 lys2ΔBgl hom-10 ade2Δ1 ade8) (Chen and Kolodner, 1999). The sae2Δ deletion 

strains, LSY2706 and LSY2707, were generated by one-step gene-replacement of RDKY3615 

and RDKY3617, respectively with sae2::KanMX PCR products. The mre11-H125N derivatives, 

LSY3388 and LSY3389, were created by one-step replacement of RDKY3615 and RDKY3617 

with mre11-H125N-NatMX PCR products. The rad51Δ (LSY3441) and rad51Δ sae2Δ 

(LSY3442) strains were generated by one-step gene replacement of RDKY3615 and LSY2706 

with the XbaI/PstI fragment from the pAM28 plasmid (Rattray and Symington, 1994). Wild type 

(LSY3449-18A) and rfa1-t33 (LSY3449-10D) strains bearing the ade2 direct repeat were 

generated by crossing appropriate haploids (Mozlin et al., 2008). 

GCR assays and PCR mapping. Fluctuation assays to determine the rate of GCRs, PCR 

mapping and amplification of the junctions were performed as previously described (Putnam 

and Kolodner, 2010);(Schmidt et al., 2006). Some telomere addition events were identified 

using a terminal transferase-mediated PCR method (Forstemann et al., 2000). Briefly, terminal 

transferase (New England Biolabs) was used to add a C-tail to DNA ends. Then, a 5’-

(CGGGATCC)G18-3’ primer and primer that anneals only adjacent to the breakpoint was used 

to PCR amplify the region and sequenced. For physical analysis of inversion duplications, 3 µg 

of genomic DNA was digested with 20 units of the indicated restriction endonucleases, 

separated by gel electrophoresis and transferred to Biobond-Plus nylon membrane (Sigma) for 

hybridization.  



PFGE and aCGH. Samples for PFGE were obtained from 7 mL saturated yeast cultures in 

YPD. Cells were embedded in low-melt agarose and lysed as previously described (Amberg, 

2005). Chromosomes were separated by CHEF-DR II Pulsed-Field Electrophoresis system 

(BioRad) following a published protocol (Argueso et al., 2008). Chromosomes were transferred 

to nylon membranes and hybridized with a radiolabeled PCM1 probe to identify Ch V 

rearrangements. Agarose plugs were melted and the DNA was sonicated, extracted and 

labeled for microarray hybridization as previously described (Zhang et al., 2013). 

Bisulfite sequencing 

2 µg of genomic DNA was treated with the EpiMark Bisulfite Conversion kit (New England 

Biolabs) according to the manufacturers instructions. Bisulfite treated DNA was used for PCR 

amplification using EpiMark Hot Start Taq DNA Polymerase (New England Biolabs) according 

to the manufacturers instructions. 

Determination of spontaneous mitotic recombination rates:  Mitotic recombination rates 

between ade2 direct repeats were determined as described previously (Mozlin et al., 2008).  
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