
Supplementary Table 1 – Buffer recipes. 

2X digestion buffer (100mL) 
    

 
concentration 

   reagent stock final volume comment 
Triton® X-100 10% 2% 20 mL 

 Tris-HCl 1M, pH 7.5 100mM 10 mL 
 

NaCl 5M 300mM 6 mL 

 sodium deoxycholate 5% 0.20% 4 mL 

 CaCl2 1M 10mM 1 mL 

 H2O 

  
59 mL 

 sodium butyrate 1M 10mM 
  

25uL in 2.5mL of 2X buffer 

Micrococcal Nuclease  100% 0.04%   
1uL in 2.5mL of 2X buffer 

      

      2X labeling buffer (200uL) 
    

 
concentration 

   reagent stock final volume comment 
PEG 400 100% 30% 60 uL 

 Quick Ligase buffer 10x 2x 45 uL 
 

ATP 10mM 1.75mM 35 uL 

 EndIt enzyme 100% 8% 16 uL 

 Fast Ligase 100% 8% 16 uL 

 EGTA 0.5M 40mM 16 uL 

 dNTPs 10mM 0.5mM 10 uL 

 sodium butyrate 1M 10mM 2 uL 

 

      

      carrier buffer (1mL) 
    

 
concentration 

   reagent stock final volume comment 
digestion buffer 2x 0.5x 250 mL 

 PEG 400 100% 18% 175 mL 
 

EGTA 0.5M 20mM 40 mL 

 PBS 1x 0.54x 535 mL 

 
 

  
  

 

 

   

 

 



stopping buffer (100mL) 
    

 
concentration 

   reagent stock final volume comment 
Triton® X-100 10% 1% 10 mL 

 EGTA 0.5M 30mM 6 mL 
 

EDTA 0.5M 30mM 6 mL 

 Tris-HCl 1M, pH 7.5 50mM 5 mL 

 NaCl 5M 150mM 3 mL 

 sodium deoxycholate 5% 0.10% 2 mL 

 H2O 

  
68 mL 

 

      

      2X ChIP elution buffer 
(100mL) 

    

 
concentration 

   reagent stock final volume comment 
NaCl 5M 600mM 12 mL 

 SDS 10% 1% 10 mL 
 

EDTA 0.5M 10mM 2 mL 

 Tris-HCl 1M, pH 7.5 10mM 1 mL 

 H2O 

  
75 mL 

 

     

need to incubate at 65 
before use 

      SC-PCR (25uL) 
    

 
concentration 

   reagent stock final volume comment 
Hercules buffer 5x 1x 5 uL 

 SC-PCR primers 50uM each 3uM each 1.5 uL denature - 95C 3min 

DMSO 100% 4% 1 uL denature - 95C 30sec 

dNTPs 

  
0.5 uL anealing - 55C 10sec 

Hercules Taq Enzyme 

  

0.5 uL elongate - 72C 1min 

DNA 

  
17 uL elongate - 72C 10min 

 

  



Supplementary Table 2 – A list of 1152 sequences of the barcode adaptors used. See corresponding 

Excel file. 

  



Supplementary Table 3A – Sequencing performance. The number of reads, alignment rate and distinct 

rate for every Hiseq run performed. Runs that did not use a full lane are marked with *.  

Sequencing 
Run # Cell types Epitopes 

# of 
samples 

Million 
reads 

Bases with       
PF>=Q30  % aligned 

1 ES MEF EML 
H3K4me3 
H3K4me2 

23 322 93% 75% 

2 
ES MEF 

ES-MEF mix 
H3K4me3 
H3K4me2 

43 250 86% 79% 

3* ES H3K4me2 13 89 82% 66% 

4* ES H3K4me2 5 57 84% 77% 

5 ES H3K4me2 37 203 85% 70% 

 

Supplementary Table 3B – Overview of experiments. The number of samples and single cells identified 

for each cell-type and epitope is presented, as well as the number of cells remaining after preprocessing 

of the clustering algorithms. The distribution of number of reads per cell is also presented for the cells 

remaining after filtering. 

cell 
type Epitope 

# of 
samples 

# of 
cells 

single 
cells 
per 

sample 

# of 
cells 
after 
QC 

# of reads per cell 
(mean ± STD) 

ES H3K4me3 12 1155 100 314 542 ± 252 

ES H3K4me2 69 9207 133 4643 796 ± 200 

MEF H3K4me3 12 1279 111 376 544 ± 218 

MEF H3K4me2 14 921 68 762 634 ± 291 

EML H3K4me3 2 491 246 193 510 ± 256 

mix H3K4me3 10 1716 171.6 1020 381 ± 275 

 

  



Supplementary Table 4 – A list of the 91 data-sets used to create the signature library. See 

corresponding Excel file. 

Supplementary Table 5, Source Data for Figure 5A – The 4 clusters of H3K4me2 ES cells and MEFs. For 

each cluster, the mean across all cells is given in a separate row for each signature. Table is coded with 

colors matching the matrix in Figure 5A. See corresponding Excel file. 

Supplementary Movie 1 – Cell encapsulation.  A slowed down movie of ES cells as they are 

encapsulated together with digestion buffer in the microfluidic co-flow drop-maker.  

Supplementary Movie 2 – Drop labeling. A slowed down movie showing barcode drops (small) and 

drops containing cellular chromatin (large) merge together with labeling buffer flowing into the T-

junction.  

Supplementary File 1 – design of microfluidic devices. This compressed folder includes 3 ACAD designs, 

one for the 96 parallel drop makers, one for the co-flow drop maker and one for the 3 point merger.   



Supplementary Note 1 - Quality Control for clustering analysis 

We checked that the (H3K4me2-based) ES+MEF clusters that we obtain are not sensitive to arbitrary 

technical aspects of the analysis. These investigations (detailed below) demonstrate that our results are 

not driven by some part of the data (robustness under omission of 1/2 the cells), are insensitive to the 

precise choice of signatures and are the same for two different cell-cell distance metrics. By randomly 

shuffling data between cells, we show that the correlations between the signatures that drive the 

clustering disappear. 

Independence of clustering on choice of cells: 

Of the 5,405 cells that passed QC filters, we randomly selected 50% (2,702 cells) and re-clustered. This 

was repeated 100 times. Each time, there was a striking correspondence between the new clusters, and 

the original ES1, ES2, ES3, and MEF clusters of the full-data analysis. For each such bootstrap sample, we 

calculated the fraction of cells that were assigned to their original cluster. The results (Supplementary 

Fig. 8B) show that very consistently more than 90% of the cells in any of the clusters are associated with 

the same cluster even when relying on only half the available data.  

Independence of clustering on set of signatures: 

To ensure that the clusters found in ES cells are not a consequence of the specific choice of signatures 

that we have made, we used a different set of 254 signatures (E. Meshorer, personal communication). 

We used hclust to collect the signatures in 100 groups, and selected a representative signature from 

each group ('Meshorer signatures'). We then calculated single-cell signature-score vectors for all cells, 

and proceeded with clustering as before to produce 4 clusters. We also repeated this procedure for the 

complete set of 314 signatures without any manual curation or filtering. The high degree of agreement 

between the resulting clusters and the ones obtained with the first set of signatures was used to 

associate the two sets of clusters, and the new clusters were named suggestively as 'ES1’, 'ES2’, 'ES3’, 

and 'MEF’. Supplementary Figure 8C shows MDS plots for 1000 randomly sampled cells colored by the 

original clustering (top), and (using same MDS coordinates) colored according to the new clusters 

derived from the Meshorer signatures (middle) and all signatures (bottom). The plots show a high 

degree of similarity between the results of clustering by the three sets of signatures. 

Clustering with randomly generated single cells: 

It is important to verify that the clusters that we find are not a consequence of the choice of signatures 

(some evidence for this has already been presented above). This is particularly true because the clusters 

are driven by correlations between signatures, and the presence of overlapping genomic regions 

between signatures induces correlations that have nothing to do with true co-variation of signal over 

different genomic regions across single cells. With a handful of signatures one might address this by 

computationally eliminating overlaps between them. With 314 signatures, this is impractical. Instead, 

we clustered the signatures by their overlap-based correlations in an unsupervised manner and then 

picked one representative from each of the 91 clusters, as described in the Online Methods. 

Supplementary Figure 8C (top) shows on the Y axis the correlation between signatures based on co-

variation across cells in the population, and on the X axis the overlap-based correlations. Each dot 



represents a pair of signatures, and the red dots are correlations among the 91 representative 

signatures from each signature-cluster. There are two notable observations about the figure: a) the 

overlap-based clustering and representative selection are a good strategy - the overlap correlations 

between the representative signatures are much smaller than the general range of such correlations 

among all signatures; b) for all signatures, and for the representative ones in particular, the single-cell 

based correlations (and anti-correlations) much exceed the overlap-based ones. 

Next, we randomly redistributed the reads between the single cells. In the reshuffled data set the 

number of reads in each single cell was preserved as well as the number of single cells supporting each 

genomic position. We then recalculated the cell-based correlations between the signatures 

(Supplementary Fig. 8C (bottom)). One sees that the correlations are greatly reduced in the random set 

compared to the real data, essentially being as low as the degree of overlap between them allows. This 

is strong evidence that the structure in the data that drives the ES clusters is an outcome of genuine cell-

to-cell co-variation in the data, and not grounded in the signatures themselves. 

Controlling for cell cycle: 

To examine whether the ES clusters that we identified are related to cells in different cell-cycle stages, 

we used two sets of cycling genes - those that have higher expression in G1/S and those whose 

expression is higher at G2/M. We created a signature from each gene set, which includes all gene loci as 

well as distal regions marked by H3K4me2 (as inferred from aggregate single-cell data) that are within 

50kb of a gene in the set. We generated signatures from these sets and then calculated the distributions 

of signature scores across the different ES clusters. The distributions of G1/S and G2/M signature scores 

show no significant difference between ES clusters in contrast to other biological relevant signatures 

such as OCT4, as presented in Supplementary Figure 8E. We thus do not find evidence that the ES cell 

sub-populations reflect different cell cycle stages or expression. 

 

  



Supplementary Note 2 - Data comparison with single cell RNA expression  

Expression and H3K4me2 enrichment trends correlate across cell populations 

For this analysis we used RNA-Seq data from Kumar et al 1, which includes expression (tpm) of 8,885 

genes in 171 mouse ES cells. As a first step, we centered and scaled each gene so that its average over 

the cell population is 0 and standard deviation 1. For each of the genomic signatures (described above), 

we collated all genes whose promoters overlap the signature. An expression score for a signature was 

defined as the difference between the mean (normalized) expression of the genes associated with the 

signature in a given cell, and the mean expression of all 8,885 genes in that cell. We thus computed 

normalized ‘expression’ scores for a signature across all single ES cells based on the expression of the 

associated genes (relative to overall gene expression).  

We calculated the signature expression scores for 6 signatures that demonstrated robust patterns of 

variation across the single-cell chromatin data for ES cells. These include 2 polycomb-related signatures 

(Ezh2, Ring1B), and 4 pluripotency signatures (Tcf3, Oct4, Sox2, and Nanog). We removed genes that 

were associated with more than one signature from all but one signature, so that the final gene lists 

associated with each signature were completely disjoint. 

Oct4        Sox2       RING1B        Tcf3        Ezh2 Nanog  

1441        392        112                 1668      574          1951 

We then computed pairwise correlations between the signatures based on either (a) the H3K4me2 

signature scores across single cells or (b) the expression scores across single cells. Figure 6B, C displays 

these correlations as heat maps, and the order of signatures was determined by unsupervised 

clustering. The pairwise correlations are plotted against one another in Figure 6D. 

 

Clustering RNA-Seq data and agreement with chromatin-based clusters 

We used K-means clustering to partition the 171 cells (using kmeans) into two clusters based on the 6 

expression signatures. The histograms in Supplementary Figure 10 show the distributions of the 

signature scores across the two clusters, confirm that the signatures are indeed different between the 

two clusters, and demonstrate that cluster #1 shows higher expression for the polycomb-related 

signatures, while cluster #2 is shows higher expression for the pluripotency signatures (analogous to ES3 

and ES1, respectively). 

Finally, we used the two extreme ES cell clusters, ES1 and ES3, to produce two sets of genes: the first set 

includes genes with higher H3K4me2 in ES1 (446 genes); the second set includes genes with higher 

H3K4me2 in ES3 (47 genes). Supplementary Figure 10 shows the mean (normalized) expression of each 

gene set in each of the two clusters derived from the expression data. The ES1 gene set shows higher 

mean expression in expression cluster #2. The ES3 gene set shows higher mean expression in cluster #1. 

Thus, single-cell chromatin profiling and single-cell RNA profiling data for ES cells reveal similar patterns 

of variability at similar signature gene/element sets. Both approaches also identify two sub-populations, 

based on coherent differences in pluripotency and Polycomb signatures, with related patterns of 

enrichment at common gene/promoter sets.  

  



Supplementary Note 3 - Poisson based statistics for choosing cell-representing barcodes 

To distinguish barcodes representing single cells from barcodes representing multiple cells or from 

barcodes representing empty drops with background reads we use a Poisson model to represent the 

distribution of the number of reads per barcode. Under the assumption that each drop is associated 

randomly with any of the 1152 barcodes with a probability 1/1152 and that the association of each drop 

is independent of the other drops, we can use the Poisson distribution to describe the probability of 

finding, in a collection of n drops, x drops all carrying the same barcode: 

n – total number of drops 

𝑃(𝑥) = P
λ=

𝑛
1152

(𝑥) 

where 

 Pλ(𝑥) =
λ𝑥

𝑥!
𝑒−λ. 

The number of DNA fragments labeled within each drop is modeled using the gamma distribution, 

conveniently providing a non-negative distribution of values with a given mean 𝜇 and coefficient of 

variation c. Thus, the number of reads X associated with each of the 1152 unique barcodes distributes as 

the convolution of the two distributions: 

X – the number of reads associated with each of the 1152 unique barcodes 

𝑁𝜇,𝑐,𝑛(𝑋) = 𝑃𝜆(1)G𝜇,𝑐(𝑋) + 𝑃𝜆(2) ∑ G𝜇,𝑐(𝑘1)G𝜇,𝑐(𝑋 − 𝑘1)

𝑋

𝑘1=0

+ ⋯ 

With 

λ =
𝑛

1152
, 

G𝑘,𝜃(𝑋) =
X𝑘−1

Γ(k)𝜃𝑘 𝑒−𝑥
𝜃  

is the gamma distribution, and the conversion 𝜇, 𝑐 ⇔ 𝑘, 𝜃 is given by 𝜇 = 𝑘𝜃 and 

𝑐 =
1

√𝑘
. 

We fit the observed distribution of reads per barcode by a combined distribution of two populations of 

drops: ne cell-free drops, with an average of 𝜇𝑒 ± 𝑐 % background reads per drop (Fig. 2D, blue) and ns 

drops containing single-cells, with an average of 𝜇𝑠 ± 𝑐 % reads per cell (Fig. 2D, green). We optimize 

the values of ne, ns, 𝜇𝑒 , 𝜇𝑠 and c to fit the experimentally measured distribution of number of reads per 

barcode. We repeat this process for each experiment (see Supplementary Table 3B) and find that on 

average the coefficient of variation is 𝑐 = 1 ± 0.2, the signal to noise ratio, which is the ratio between 

the number of reads per single-cell drop to the number of reads per empty drop is  



𝑆𝑁𝑅 =
𝜇𝑠

𝜇𝑒
= 43 ± 23. 

To isolate barcodes representing single-cells we choose a threshold number of reads Xmin such that 

1 − ∑ 𝑁𝜇𝑒,𝑐,𝑛𝑒
(X)

𝑋𝑚𝑖𝑛
𝑋=1 = 10−2   

meaning that the probability of a barcode with Xmin transcripts or more to be associated with cell-free 

drops is less than 1%; we also choose a threshold number of reads Xmax such that 

1 − ∑ 𝑁𝜇𝑠,𝑐,𝑛𝑠
(X)

𝑋𝑚𝑎𝑥
𝑋=1 = 10−2   

meaning that the probability of a barcode with Xmax transcripts or more to be associated with single-cell 

drops is less than 1%. Barcodes with X reads falling within this range Xmin<X< Xmax are chosen as those 

barcodes representing single cells. The number of single-cell drops as a fraction of the number of 

barcodes is 

 
𝑛𝑠

# 𝑜𝑓 𝑏𝑎𝑟𝑐𝑜𝑑𝑒𝑠
= 14% ± 3%.  

The number of such barcodes and the number of reads they contribute is summarized for all 

experiments in Supplementary Table 3B.  
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