Supplementary Information

In Vitro Opioid Receptor Affinity and in Vivo Behavioral Studies of Nelumbo nucifera Flower

Mallika Kumarihamy^a, Francisco León^b, Sara Pettaway^b, Lisa Wilson^b, Janet Lambert^b, Mei Wang^a, Christopher Hill^a, Christopher R. McCurdy^b, Mahmoud ElSohly^{a,c}, Stephen J. Cutler^{a,b}, Ilias Muhammad^{a,*}

^aNational Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA

^bDepartment of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA ^cDepartment of Pharmaceutics and Drug Delivery, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA

^{*} Corresponding author. Tel.: +1 662 915 1051; fax: +1 662 915 1006. E-mail address: milias@olemiss.edu (I. Muhammad).

Table of Content

	Page
Figure 1S. ¹ H NMR spectrum of nuciferine (1).	4
Figure 2S. ¹³ C NMR spectrum of nuciferine (1).	5
Figure 3S. ¹ H NMR spectrum of <i>nor</i> -nuciferine (2).	6
Figure 4S. ¹³ C NMR spectrum of <i>nor</i> -nuciferine (2).	7
Figure 5S. ¹ H NMR spectrum of asimilobine (3).	8
Figure 6S. ¹³ C NMR spectrum of asimilobine (3).	9
Figure 7S. ¹ H NMR spectrum of armepavine (4).	10
Figure 8S. ¹³ C NMR spectrum of armepavine (4).	11
Figure 9S. ¹ H NMR spectrum of <i>O</i> -methylcoclaurine (5).	12
Figure 10S. ¹³ C NMR spectrum of <i>O</i> -methylcoclaurine (5).	13
Figure 11S. ¹ H NMR spectrum of <i>N</i> -methylcoclaurine (6).	14
Figure 12S. ¹³ C NMR spectrum of <i>N</i> -methylcoclaurine (6).	15
Figure 13S. ¹ H NMR spectrum of coclaurine (7).	16
Figure 14S. ¹³ C NMR spectrum of coclaurine (7).	17
Figure 15S. ¹ H NMR spectrum of higenamine (8).	18
Figure 16S. ¹³ C NMR spectrum of higenamine (11).	19
Figure 17S. ¹ H NMR spectrum of higenamine derivative 12 .	20
Figure 18S. ¹ H NMR spectrum of higenamine derivative 13 .	21
Figure 19S. UHPLC-UV (280 nm) chromatogram of basic partition of <i>N. nucifera</i> white flower	22
Figure 20S. UHPLC- ESI Positive chromatogram of basic partition of	
N. nucifera white flower Figure 21S. UHPLC-UV (280 nm) chromatogram of basic partition of	23
N. nucifera pink flower Figure 22S. UHPLC- ESI Positive chromatogram of basic partition of	24
N. nucifera pink flower.	25
Figure 23S. UHPLC-UV (280 nm) chromatogram of acidic partition of <i>N. nucifera</i> white flower .	26
Figure 24S. UHPLC- ESI Positive chromatogram of acidic partition of	
N. nucifera white flower Figure 25S. UHPLC-UV (280 nm) chromatogram of acidic partition of	27
N. nucifera pink flower	28
Figure 26S. UHPLC- ESI Positive chromatogram of acidic partition of <i>N. nucifera</i> pink flower	29

Figure 27S. GC/MS analysis of palmitic acid Me ester (Std)	30
Figure 28S. GC/MS analysis of linolic acid Me ester (Std)	30
Figure 29S. GC/MS analysis of acidic patition (white flower)	30
Figure 30S. GC/MS analysis of acidic patition (pink flower)	30
Figure 31S. GC/MS analysis of fraction G	31
Figure 32S. GC/MS analysis of fraction H	32
Figure 33S. <i>In vivo</i> mouse tetrad assay of acidic partition of <i>N. nucifera</i>	33
Figure 34S. In vivo mouse tetrad assay of basic partition of N. nucifera	34
Figure 35S. <i>In vivo</i> mouse tetrad assay of mixture of compound 5-7 of	
N. nucifera	35
Figure 36S. <i>In vivo</i> mouse tetrad assay of coclaurine (7)	36
Figure 37S. <i>In vivo</i> mouse tetrad assay of nuciferine (1)	37
Figure 38S. Structure of alkaloids and their analogs from <i>N. nucifera</i>	38

Figure 1S. ¹H NMR spectrum of nuciferine (1).

Figure 2S. ¹³C NMR spectrum of nuciferine (1).

Figure 3S. ¹H NMR spectrum of nor-nuciferine (2).

Figure 4S. ¹³C NMR spectrum of nor-nuciferine (2).

Figure 5S. ¹H NMR spectrum of asimilobine (3).

Figure 6S. ¹³C NMR spectrum of asimilobine (3).

Figure 7S. ¹H NMR spectrum of armepavine (4).

Figure 8S. ¹³C NMR spectrum of armepavine (**4**).

Figure 9S. ¹H NMR spectrum of *O*-methylcoclaurine (**5**).

Figure 10S. ¹³C NMR spectrum of *O*-methylcoclaurine (**5**).

Figure 11S. ¹H NMR spectrum of *N*-methylcoclaurine (6).

Figure 12S. ¹³C NMR spectrum of *N*-methylcoclaurine (6).

Figure 13S. ¹H NMR spectrum of coclaurine (7).

Figure 14S. ¹³C NMR spectrum of coclaurine (7).

Figure 15S. ¹H NMR spectrum of (±)-higenamine (11).

Figure 16S. ¹³C NMR spectrum of (±)-higenamine (11).

Figure 17S. ¹H NMR spectrum of higenamine derivative **12** (4′-*O*-methylarmepavine).

Figure 18S. ¹H NMR spectrum of higenamine derivative **13** (4′,7-di-*O*-methylarmepavine).

Figure 19S. UHPLC-UV (280 nm) chromatogram of basic partition of *N. nucifera* white flower.

Figure 20S. UHPLC- ESI Positive chromatogram of basic partition of *N. nucifera* white flower.

Figure 21S. UHPLC-UV (280 nm) chromatogram of basic partition of *N. nucifera* pink flower.

Figure 22S. UHPLC- ESI Positive chromatogram of basic partition of *N. nucifera* pink flower.

Figure 23S. UHPLC-UV (280 nm) chromatogram of acidic partition of *N. nucifera* white flower.

Figure 24S. UHPLC- ESI Positive chromatogram of acidic partition of *N. nucifera* white flower.

Figure 25S. UHPLC-UV (280 nm) chromatogram of acidic partition of *N. nucifera* pink flower.

Figure 26S. UHPLC- ESI Positive chromatogram of acidic partition of *N. nucifera* pink flower.

2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 0.0 10 20 30 40 Time (min)

Figure 27S. GC/MS analysis of palmitic acid Me ester (Std)

Figure 28S. GC/MS analysis of linoleic acid Me ester (Std)

Figure 29S. GC/MS analysis of acidic patition (white flower) Figure 30S. GC/MS analysis of acidic patition (pink flower)

Figure 31S. GC/MS analysis of fraction G.

Figure 32S. GC/MS analysis of fraction H.

Figure 33S. *In vivo* mouse tetrad assay of acidic partition of *N. nucifera*.

Figure 34S. *In vivo* mouse tetrad assay of basic partition of *N. nucifera*.

Figure 35S. *In vivo* mouse tetrad assay of mixture of compound **5-7** of *N. nucifera*.

Figure 36S. *In vivo* mouse tetrad assay of coclaurine (7).

Figure 37S. In vivo mouse tetrad assay of nuciferine (1).

Figure 38S. Structure of alkaloids and their analogs from *N. nucifera*.