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Supplemental Methods 
 
Data sources for synthetic and non-biological networks 
 
Synthetic network benchmarks 
For disjoint community detection, we used the LFR benchmarks with 1000 nodes with 
average degree (number of connections) of 15 and maximum degree of 50 (Figure 2A)1.  
The exponent, γ, for the degree sequence varies from 2 to 3 and the exponent, β, for 
the community size distribution, varies from 1 to 2.  Results over four pairs of the 
exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2) indicate community detection is robust 
over this parameter range (Figure 2A, Figure S1). For each of these community 
distributions, the fraction of between- versus within-community connections (µ) was 
varied from 0.05 to 0.95 (Figure 2, Figure S1).  This means that each node shares a 
fraction (1- µ) of its edges with the nodes in its community and a fraction µ of its edges 
with the nodes outside its community.  Thus, low µ-values indicate the test networks 
which are composed of relatively isolated communities, and which should be relatively 
easy to accurately define.  To generate robust results, 10 network instances are 
generated for each value of µ and we report average performance across a variety of 
statistics commonly used to assess community recovery (Figure 2A), including NMI, ARI 
and F-measure2. 
 
When networks contain multi-community nodes, whose links are evenly divided 
between multiple communities, community detection is even more challenging.  To 



generate overlapping networks in the LFR benchmarks, we follow the standard practice 
of setting 10% of the nodes to have their connection evenly divided between two or 
more communities (Om parameter) (Figure 2C).  This form of overlapping is distinct from 
the random between-community connections (parameterized by µ), because this 10% 
subset of nodes is equally well connected to multiple communities.  We report average 
community recovery, using a variety of statistics, averaged over 10 network instances 
for each value of Om, across a variety of community mixing levels (µ) (Figure 2D).  Not 
all traditional community quality metrics extend to overlapping networks, so we 
implement an extension of the normalized mutual information (NMI) and the Omega 
Index (OI) to track recovery of overlapping communities2. The OI is equivalent to the 
common Adjusted Rand Index (ARI) for disjoint communities, while the overlapping NMI 
measure does not reduce to the standard formulation of NMI for disjoint communities. 
 
These overlapping community detection results could primarily be driven by 
SpeakEasy’s excellent disjoint community performance, since most nodes have a single 
non-overlapping true community assignment.  Therefore, we specifically track recovery 
of multi-community nodes using a statistic we call F(multi)-score, which is computed 
identically to the standard F-score, but the inputs specifically track if multi-community 
nodes are correctly assigned to all of their true communities (Figure 2D).  These results 
indicate that SpeakEasy fulfills the goal of detecting multi-community nodes and does 
not purely rely on its strong disjoint community detection abilities.  Like the related label 
propagation algorithm, GANXiS3, SpeakEasy shows a rare upward trend in F(multi)-
score as Om increases.  This result, specifically on multi-community nodes (Figure 2D), 
should be considered with the overall lower community recovery at higher Om values 
(Figure 2C).  Together, these results indicate that while multi-community nodes increase 
the difficulty of community detection, it is still possible to cluster such networks 
accurately and to detect the sets of communities associated with multi-community 
nodes. 
 
Abstract clustering performance on real-world networks 
Traditionally, performance of clustering methods on networks with unknown correct 
clustering solutions is measured in terms of modularity (“Q”).  Modularity measures the 
number of within-community connections, relative to the number expected at random4.  
This measure has a maximum value of 1, but in practice maximum possible Q-value will 
be less than 1.0, due to between-community links.  Nevertheless, comparing Q-values 
between partitions generated by different clustering methods provides a relative 
measure of their ability to detect well-separated communities.  Since the classic 
modularity formula does incorporate the number of between module connections but not 
the density of nodes within communities, anomalous situations can occur, wherein 
better partitions have lower Q values (contrary to the intended operation of Q)5,6.  
Therefore, we also track performance of SpeakEasy in terms of an updated modularity 
measure, Qds, which adds a correction term to the original modularity formula to create 
a more accurate metric5. 
 
 



Algorithm details 

 



 



 
Computational complexity of SpeakEasy 
The initialization takes O(|V| * numHistoryLabels) steps to assign an initial buffer with a 
certain number of history labels to each node.  
 
The label propagation procedure requires O(|V| * numHistoryLabels) operations to 
calculate the global frequencies of all labels in the network.  
 
Getting the actual numbers of labels that a node receives from its neighbors costs 
O(<k> * numHistoryLabels) where <k> is the average degree of the network.  
 
The procedure to determine the most unexpected label for a node has a complexity at 
most O(<k> * numHistoryLabels) because there are at most numHistoryLabels distinct 
labels in the buffer of each of its neighbors.  
 
Thus, it totally requires O(|V| * <k> * numHistoryLabels) to update each node’s historical 
label buffer with the most unexpected popular label received from its neighbors. In total, 
the label propagation procedure has a complexity of O(|V| * <k> * numHistoryLabels) 
which can be expressed as O(|E| * numHistoryLabels).  Moreover, the label propagation 
takes a certain number of iteration, denoted as T, which is usually a small constant.  
 
Thus, the complexity for the label propagation of SpeakEasy is O(T * |E| * 
numHistoryLabels).  Since T and numHistoryLabels are small constants (T has a default 
value of 50 and numHistoryLables defaults to 5), the overall complexity can be reduced 
to O(|E|) which is linear in terms of the network size for sparse matrices. 
 
 
Computational complexity of SpeakEasy in practice 
SpeakEasy scales linearly with the number of edges, and can cluster typical biological 
networks quickly.  For instance SpeakEasy clusters 10,000 nodes with random 2% 
connectivity density (2 million links) in ~10 seconds with an i7 2620M processor, using 
~1GB of RAM. Clustering the amazon co-purchase network with over 300,000 nodes 
(Table 2) required 45 seconds on the same processor and 0.5GB of RAM.  The typically 
sparse connectivity of biological networks7 in combination with the linear complexity of 
SpeakEasy make it feasible to derive consensus clustering estimates, by clustering 
networks many times using differential initial conditions, to identify stable communities 



and multi-community nodes.  Even on large full matrices, such as coexpression 
networks, the efficiency of SpeakEasy enables stable community estimates using 
typical hardware. 
 
 
Selecting final partitions and defining multi-community nodes: 
Stochastic clustering techniques such as SpeakEasy, have the potential to generate 
more accurate and robust results than typical methods that output a single set of 
communities8,9.  Because SpeakEasy generates many “partitions” (sets of communities) 
during replicate runs, we are faced with the task of combining these outputs into a final 
partition.  This process is known as consensus clustering and in many cases solutions 
to this problem are more statistically challenging than basic clustering, essentially 
because it involves relationships of semi-overlapping sets.  The manner in which the 
“best” final partition is chosen among many stochastically generated partitions is 
independent of the method used to generate the partitions.  Therefore, improving 
consensus clustering could lead to better SpeakEasy results.    
 
Overlapping communities and multi-community nodes are defined through a 
combination of the final representative partition, and the co-occurrence matrix, which is 
generated by all partitions.  The final representative partition is chosen to be the one 
with the highest average ARI with all other partitions.  Individual nodes with significant 
co-occurrence weight in more than one community can be classified as multi-community 
nodes.  Each entry A(i,j) of the co-occurrence matrix denotes how many times nodes i 
and j cluster together, under replicate SpeakEasy partitions.  We set the threshold for 
community membership as a function of the maximum number of community 
memberships considered realistic in a particular biological setting, specifically 1/max-
number-of-communities.  This adaptive threshold is intuitive, because as the number of 
communities associated with a given node increases, the frequency in which a node is 
found in any one of the communities decreases.  This threshold is used in conjunction 
with the co-occurrence matrix: nodes that co-occur in multiple communities with an 
average weight (across all members of that community) greater than the threshold are 
identified as multi-community nodes.  More or less stringency in this threshold provides 
control over the number of multi-community nodes.  This flexibility in defining multi-
community nodes is useful, because in some experimental settings it might be desirable 
to obtain more or less conservative definitions of multi-community nodes. 
 
 
Application-specific methods and data acquisition 
 
Protein-protein interaction network processing 
Protein complexes were downloaded from various databases such as MIPS and these 
gold-standard complexes were compared to communities derived from binary 
interactions identified in the Gavin et al.10 and Collins et al.11.  Because we validate the 
clustering output by comparing to ground truth complexes, we operate on the (large) 
subsets of Gavin and Collins networks wherein the nodes on both sides of a given link 



are present in the ground truth.  If we did not do this, there would be nodes in the 
network for which we do not have ground truth community information. 
 
Application to sorted cell type populations 
We compare SpeakEasy results to several hierarchical clustering techniques that are 
often “first pass” clustering methods applied to cell type datasets such as Immgen.  
While hierarchical techniques generate multiple levels of communities, it is unclear 
where to “cut” the hierarchical “tree” of communities in order to extract optimum 
communities and/or subcommunities.  Because the optimal number of communities in a 
dataset is generally unknown, we estimate the number of cell types in Immgen, using 
ten different methods12.  When applied to Immgen, most of these methods proposed a 
single community containing all cells, or placed every cell in its own community.  
Therefore, we used the mode of estimates that do not fall at these extremes 
(recommendation: two communities).  When using the recommended number of 
communities, all forms of hierarchical clustering showed relatively low correspondence 
with known cell types.  We also test results when hierarchical methods are supplied with 
the true number of communities (information that is rarely available).  Also, we compare 
results from single, average and complete hierarchical linkage methods.  When 
compared to known cell classes (B cell, natural killer cells etc) SpeakEasy communities 
show higher NMI with the standard Immgen definitions than any hierarchical method, 
even when those methods are supplied with the true number of communities.  The 
second iterative application of SpeakEasy also shows higher NMI with the nested 
classification of cell class with tissue of origin.  In all cases it is much more accurate 
than when using the predicted number of true communities, which is a more realistic 
scenario.  Moreover, results from single versus average or complete linkage vary 
substantially in their ability to recover true communities, but for a typical dataset where 
the true communities are unknown, the best linkage method is rarely known in advance. 
 
Gene coexpression network generation and assessment 
Because communities containing thousands of genes are difficult to test experimentally, 
we apply SpeakEasy iteratively three times to these datasets to reduce the typical 
community size to a few hundred genes, which is experimentally tractable.  This might 
seem at odds with SpeakEasy’s ability to automatically select community number.  
However, unlike hierarchical clustering, SpeakEasy cannot be forced to output 
subcommunities, because it is always admissible for the algorithm to place all nodes 
into a single community.  To calculate median Bonferroni-corrected p-values for 
functional enrichment, we consider the top-scoring category for each module in a gene 
ontology biological process, among all modules with at least 30 genes (which is a 
practical threshold for GO enrichment) with at least one category scoring an un-
corrected enrichment score of p<.01.  
 
The weighted gene networks coexpression network analysis (WGNCA) tool is frequently 
used to identify coexpressed gene sets13,14.  There are a significant number of practical 
and performance measures that distinguish SpeakEasy from this older method.  For 
instance, generating communities with WGCNA entails (i) fitting a scale-free distribution, 
which may not be appropriate for all datasets, (ii) filtering link weights, and then (iii) 



performing a hierarchical treecut to select communities, a process which is notoriously 
sensitive to noise15.  Indeed a supplementary routine for WGCNA with 19 parameters is 
offered to manually “tune” the hierarchical treecut for good results16.  On the other hand, 
for this application to coexpression networks, SpeakEasy does not require any link 
filtering or distribution fitting and uses just a single parameter (number of times to sub-
cluster).  Furthermore, SpeakEasy gene sets are backed by the best recorded 
performance on the LFR benchmarks.  In comparison, WGNCA cannot even be tested 
on the standard LFR benchmarks because it has so many manual tuning requirements.  
Functional enrichment scores for the top ten most enriched gene sets are either 
identical or highly similar for both methods, in both HBA and CCLE datasets, with larger 
differences in functional enrichment for smaller modules, with overall lower enrichment 
scores.  The median Bonferroni-corrected p-values for functional enrichment across all 
modules are of equal magnitude on the HBA dataset, while they are 3-9 orders of 
magnitude more enriched for SpeakEasy communities derived from CCLE.   
 
Electrophysiology methods 
To simulate multichannel neural recordings from which to extract action-potentials 
(spikes) to test spike sorting, previously sorted spike waveforms17 were added to brain 
noise (300-7kHz bandpass, 6.92uV RMS) to create a simulated 54 channel time series 
from a depth electrode array (spanning ~1mm with sites spaced every ~50um). 43 
unique spike samples were added to the noise file 225 times (i.e. generating 43 
communities of 225 elements, as well as one pseudo-community of 225 elements 
composed purely of noise).  The waveform around each spike consists of a 1ms window 
(25 sampled time points) centered around the peak amplitude.  A null class was 
included to simulate the presence of spurious spike detections that may occur when 
extracting spike waveform samples.  We find that while the primary clusters detected by 
SpeakEasy provide good results, they can be improved further by applying it to each 
cluster, to detect additional subclusters (Table S1).  Additional iterative subclustering 
does not improve results, indicating that only one round of subclustering is necessary 
for maximum accuracy. 
 
fMRI processing 
This analysis includes 27 subjects with PD (Mage= 66.52) and 21 controls (Mage = 62), 
selected from a larger study18. Potential participants were excluded if they had a history 
of any primary neurodegenerative disease other than idiopathic Parkinson Disease, a 
history of brain surgery for PD, moderate to severe dyskinesia, significant head trauma, 
stroke history, severe or unstable cardiovascular disease, contraindications to MRI, or a 
Montreal Cognitive Assessment score (MoCA)19 lower than 23. This study was 
approved by the University of Washington Institutional Review Board. All participants 
provided written informed consent. 

See Table S2 for sample characteristics.  Participants were predominantly right-
handed. PD patients did not differ significantly from controls on age, education, or 
scores on the MoCA. The PD subjects have declined from their premorbid cognitive 
abilities, but they are well within the range of normative values for normal controls19. PD 
subjects had significantly higher scores on the UPDRS motor subscale20. 



Males were over-represented in the PD group, consistent with higher incidence 
rates of Parkinson disease in men21. PD patients ranged from Hoehn and Yahr stage 1 
to 2.5 with most at stage 2 (N=17). At the time of the scan and corresponding 
neuropsychological evaluations, most PD patients were taking dopaminergic 
medications (24% were taking both levodopa and a dopamine agonist, 38% were taking 
only levodopa, 19% were taking only a dopamine agonist, and 19% were taking no 
dopaminergic medications).  
 
MRI acquisition  

Scans were performed after morning doses of dopaminergic medication (if 
applicable). Data were acquired using a Philips 3T Achieva MR System (Philips Medical 
Systems, Best, Netherlands, software version R2.6.3) with a 32-channel SENSE head 
coil.  During each session, whole-brain axial echo-planar images (43 sequential 
ascending slices, 3 millimeter isotropic voxels, field of view = 240x240x129 , repetition 
time = 2400 ms, echo time = 25 ms, flip angle = 79°, SENSE acceleration factor = 2) 
were collected parallel to the AC-PC line for a single resting state run and six task runs.  
Run duration was 300 volumes (12 minutes) for the resting state run which we split into 
two volumes of 6 minutes from each patient.  The rationale for this was to enhance our 
ability to avoid temporally smearing among evolving brain region communities while 
remaining within the resting-state paradigm.  A sagittal T1-weighted 3D MPRAGE (176 
slices, matrix size = 256 x 256, inversion time = 1100 ms, turbo-field echo factor = 225, 
repetition time = 7.46 ms, echo time = 3.49 ms, flip angle =7°, shot interval = 2530 ms) 
with 1 mm isotropic voxels was also acquired for registration.   
 
MRI processing 

Functional images from rest or task were processed identically using a pipeline 
developed using software from FSL22, FreeSurfer23, and AFNI24. Data were corrected 
for motion using FSL MCFLIRT (M. Jenkinson, Bannister, Brady, & Smith, 2002). The 
pipeline removed spikes using AFNI, performed slice timing correction using FSL, and 
regressed out time series motion parameters and the mean signal for eroded (1mm in 
3D) masks of the lateral ventricles and white matter (derived from running FreeSurfer on 
the T1-weighted image). We did not regress out the global signal. We did not perform 
bandpass filtering to avoid artificially inflating correlations or inducing structure that was 
not actually present in the data, and because resting state networks exhibit different 
levels of phase synchrony at different frequencies (Handwerker, Roopchansingh, 
Gonzalez-Castillo, & Bandettini, 2012; Niazy, Xie, Miller, Beckmann, & Smith, 2011). 
Three dimensional spatial smoothing was performed using a Gaussian kernel with a 
FWHM of sigma=3mm. Co-registration to the T1 image was performed using boundary 
based registration based on a white matter segmentation of the T1 image (epi_reg in 
FSL). 

We selected 264 MNI coordinates from a previous partitioning of fMRI data into 
functional nodes by Power et al.25. For each coordinate, we created a 10mm diameter 
mask in standard space and transformed that to subjects’ native space to calculate 
mean subject-specific timecourses for each ROI. We calculated the Pearson correlation 
between each pair of nodes to obtain an edge weight, representing the strength of 
connectivity. 



 
Significance of connectivity changes 
Significance of changes in community membership between resting state networks from 
the control cohort compared to the Parkinson’s cohort were estimated through 
permutation tests.  We (repeatedly) randomly mix control and Parkinson’s samples to 
generate two average connectivity matrices as pseudo-disease and pseudo-control 
groups.  There should be no disease-related differences between these matrices 
generated from randomized disease and control data.  We generate such mixed 
disease+control connectivity matrices 1000 times and detect communities in each case, 
generating 2000 paired (pseudo-disease/pseudo-control) co-occurrence matrices.  The 
distribution of differences between these co-occurrence matrices are used to generate a 
null distribution used to estimate the significance of changes within and between 
communities between the real control and PD co-occurrence matrices.  
 
We compare these clustering results to those generated by Infomap26, a clustering 
algorithm based on data compression that has previously been used in fMRI analysis 25.  
Infomap cannot take advantage of negative links found in correlations matrices, so we 
follow the standard practice of converting all links to positive values.  We find that 
Infomap places all brain regions into a single community, unless links are extensively 
filtered.  After correlations with R-value < 0.75 are removed, communities begin to 
emerge.  However, these communities are not robust; for instance, the difference 
between various Infomap-based partitions (at different correlation thresholds) is as large 
as the difference between the control and PD partitions, using SpeakEasy (Table S3).  
Furthermore, Infomap communities are a point estimate, and there is no measure of the 
robustness of communities at a particular threshold. 
 
Figure S1 Robust clustering performance with various community size 
distributions and intra-community degree distributions. (A) Various disjoint 
community recovery metrics for networks from LFR benchmarks with n=1000, γ 
(community size distribution) =3, β (within-community degree distribution) =2.  (B) 
Disjoint community recovery metrics for networks from LFR benchmarks with n=1000, 
γ=3, β=1 (C) Disjoint community recovery metrics for networks from LFR benchmarks 
with n=1000, γ=2, β=2.  
 
Figure S2 Brain region communities detected from control subject resting-state 
fMRI.  The order of communities 1-6 corresponds to the order of communities shown in 
Figure 5.   Location of brain regions in each cluster was/were visualized with the 
BrainNet Viewer27.  
 
Table S1.  Comparison of communities of similar neuronal spikes vs known spike 
communities.  
 
Table S2.  Summary of demographics of control and PD cohorts in resting-state 
fMRI study. 
 



Table S3. Comparison of brain region communities detected in control or PD 
cohorts using SpeakEasy or Infomap (the later using various thresholds for link 
significance). 
 
 
 
 
 
 
 
 
Figure S1 

 
 
 
 
 
 
 
 
 
 
 



Figure S2 

 

 

 



Table S1 
 
 
NMI 

SpeakEasy primary 
communities 

SpeakEasy secondary 
communities 

SpeakEasy tertiary 
communities 

spike waveform dataset 1 0.6381 0.8328 0.8085 

spike waveform dataset 2 0.6250 0.8202 0.7793 

spike waveform dataset 3 0.6127 0.8178 0.8052 

mean 0.6253 0.8236 0.7977 

adjusted Rand index 
SpeakEasy primary 

communities 
SpeakEasy secondary 

communities 
SpeakEasy tertiary 

communities 

spike waveform dataset 1 0.6455 0.8274 0.8103 

spike waveform dataset 2 0.5981 0.7922 0.7772 

spike waveform dataset 3 0.6487 0.8251 0.8066 

mean 0.6308 0.8149 0.7980 
 

 

Table S2 

 PD Control Total 
N 27 21 48 

Age at Scan 66.52( 9.86) 61.90(10.00) 64.50(10.08) 
Sex(number males) 20(74%) 9 (43%) 29 (60%) 

Education (years) 16.35(2.10) 15.90(2.39) 16.15(2.22) 
Hoen & Yahr 

 
2.03 (1–2.5)   

Handedness (Right) 23 19 42 
Dominant side of motor 

symptoms  
7 Left/ 18 Right/ 

2 Symmetric 
  

UPDRS Part I 10.00(5.51)  10.00(5.51) 
UPDRS Part II 8.81(5.35)  8.81(5.35) 
UPDRS Part III 23.30( 8.49) 0.81( 1.40) 13.46(12.95) 
UPDRS Part IV 1.85(3.59)  1.85(3.59) 

Levodopa (current) 18 0 18 
Dopamine agonist 

(current) 
11 0 11 

Years since symptom 
onset 

8.71(5.01)   

MOCA 26.44(2.06) 27.29(1.95) 26.81(2.04) 
Hopkins Verbal 

Learning Test 
24.48(5.69)   

Golden Stroop 
(total correct) 

189.26(24.99)   

Trails B (seconds) 74.42(31.53)   
 



Table S3 
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