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Supplementary Information for

“The free energy cost of accurate biochemical
oscillations” by Cao et al.

I. DESCRIPTIONS OF THE FOUR MODELS

Here, we describe the mathematical details of the four models of biochemical oscillations

studied in this paper. For the activator-inhibitor and the glycolysis model, we only give the

ordinary differential equations (ODE’s) to describe the deterministic part of the chemical

reactions. The actual simulations of the stochastic reactions were done using Gillespie

algorithm (see Methods in the main text). For the repressilator and brusselator models, we

use the chemical master equation (or Langevin equation with Poisson noise) and solve the

corresponding Fokker-Planck equation:

∂P (~x, t)

∂t
= −∇(FP −D∇P ) = −∇J, (S1)

where F is the force vector, and D is the noise matrix. J is the flux vector for each direction.

In all our models, the units of the parameters are composed of concentration (c, arbitrary),

time (t, arbitrary) and volume (V , arbitrary). The molecule number unit c× V represents

the real counts of a given molecule in the system. For example, if the concentration of

enzyme E is ET = 10(c), and the volume is V = 100(V ), then the total number of enzyme

E in our system is ETV = 1000. The dependence of the amplitude and the period of the

oscillations versus energy dissipation for all the four models studied in this paper are shown

in Fig. S1.

A. Activator-inhibitor model

The main components of the model are the activator R and its inhibitor X. R and X are

linked in a feedback loop through a phosphorylation-dephosphorylation (PdP) cycle (main

text Fig. 1b). R activates the synthesis of both R and X through phosphorylated enzyme

M, thus forms a positive feedback; at the same time, X degrades R, thus forms a negative

feedback. The parameter γ = d1d2f−1f−2/(a1a2f1f2) is introduced to distinguish wether the
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system is in equilibrium (γ = 1) or non-equilibrium (0 < γ < 1). The kinetics is described

by:

d[R]

dt
= k0[Mp] + k1S − k2[X][R]

d[X]

dt
= k3[Mp]− k4[X]

d[M ]

dt
= f2[MpK] + d1[MR]− a1[M ]([R]− [MR])− f−2[M ][K]

d[MR]

dt
= a1[M ]([R]− [MR]) + f−1[Mp]([R]− [MR])− (f1 + d1)[MR]

d[Mp]

dt
= f1[MR] + d2[MpK]− a2[Mp][K]− f−1[Mp]([R]− [MR])

d[MpK]

dt
= a2[Mp][K] + f−2[M ][K]− f2[MpK]− d2[MpK]

(S2)

with two mass conservation constraints: [M ] + [Mp] + [MR] + [MpK] = MT , [MpK] + [K] =

KT , where MT and KT are the total concentrations of enzyme M and phosphatase K. Each

term in the equations represents one of the reactions in the main text (see Fig. 1b). We

take symmetric parameters: k0 = k1 = k3 = 1(t−1), k2 = 1(c−1t−1), k4 = 0.5(t−1), S =

0.4(c), KT = 1(c),MT = 10(c), a1 = a2 = 100(c−1t−1), f1 = f2 = d1 = d2 = 15(t−1), f−1 =

f−2 =
√
γa1f1/d1(c−1t−1). The oscillation onset point is at γc = 2 × 10−3. Notice that the

PdP cycle’s reaction rates are much larger than the reactions of synthesis and degradation

of R and X, so the total R is almost unchanged in the time scale of the PdP cycles.

B. Repressilator

We use the simplified cell cycle model in[1], where CDK activates Plk1, and Plk1 activates

APC, which inhibits CDK in return. The (deterministic) negative feedback loop kinetics

are governed by the following ODE’s, with CDK, Plk1, APC concentrations represented by

x, y, z, respectively:

dx

dt
= α1 − β1

zn1

Kn1
1 + zn1

= fx − dx

dy

dt
= α2(1− y)

xn2

Kn2
2 + xn2

− β2y = fy − dy

dz

dt
= α3(1− z)

yn3

Kn3
3 + yn3

− β3z = fz − dz

(S3)

where fi, di are the synthesis and decay rates of each component. We chose α1 = 0.1(ct−1), α2 =

3(t−1), β1 = 3(ct−1), β2 = 1(t−1), β3 = 1(t−1), K1 = 0.5(c), K2 = 0.5(c), K3 = 0.5(c), n1 =
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8, n2 = 8, n3 = 8, and α3(t−1) is taken as the control parameter ranges from 1.0 to 3.0. The

oscillation onset point is α3 = 0.8.

The full stochastic dynamics is described by the Fokker-Planck equation (Eq. S1) with

the force vector and noise matrix given by:

F = [fx − dx, fy − dy, fz − dz], D =
1

2V
diag[fx + dx, fy + dy, fz + dz]

.

C. Brusselator

The brusselator is composed of three reactions, A→ X, B → Y , and 2X + Y → 3X. X

will degrade in a constant rate. The deterministic equation of brusselator is

dx

dt
= a− x+ x2y,

dy

dt
= b− x2y.

(S4)

where x, y are the normalized concentration of X, Y .

The Fokker-Planck equation was derived from chemical master equations (CME) in [2],

which gave:

F =

 a− x+ x2y

b− x2y

+
1

2V

 −1/2− 2xy + x2/2

2xy − x2/2

 (S5a)

D =
1

2V

 a+ x+ x2y −x2y

−x2y b+ x2y

 (S5b)

where V is the volume of the system. We used b = 0.4, and varied a ∈ [0.12, 0.18] in our

study. Fig. S2 gives two examples of probability distribution P (~x, t) and fluxes J in the

brusselator model.

D. Glycolysis oscillation

The glycolysis model in our study is taken from [3], but we have introduced finite reverse

reaction rates for the catalysis processes to study the free energy dissipation in glycolysis.

The enzyme PFK are composed of n protomers, and undergoes allosteric regulation by its

product P. Each protomer exists two states, R, which has catalytic activity for converting
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substrate S to P , and T, which is inactive. Assuming a quasi-equilibrium of the allosteric

states of PFK [3], the dynamics of S and P can be written as:

dS

dt
= vi −

nD(1 + α)n−1(1 + θ)n(kα− k′P )

L+ (1 + α)n(1 + θ)n

dP

dt
=
nD(1 + α)n−1(1 + θ)n(kα− k′P )

L+ (1 + α)n(1 + θ)n
− ksP

(S6)

where α = (a1S + k′P )/(k + d1), θ = a2P/d2. Parameters were chosen as D = 500(c), n =

2, a1 = a2 = 10(c−1t−1), d1 = d2 = 10(t−1), k = 1(t−1), vi = 0.2(ct−1), ks = 0.1(t−1), L =

7.5 × 106. k′(c−1t−1) is the reverse reaction rate of P to S. The oscillation onset point

is k′ = 4 × 10−1. Stochastic simulations were performed for 4 reactions: synthesis of S,

degradation of P, catalysis of S to P, reverse reaction of P to S. Here, we combined all

the enzymatic reactions into two reactions since the transitions between different allosteric

states of the enzyme are much faster than the slow reactions of substrate injection (vi) and

product removal (ks).

The dissipation of the system can be directly calculated by summing up the dissipation

of all the enzymatic reactions:

∆W (t) =
nD(1 + α)n−1(1 + θ)n(kα− k′P )

L+ (1 + α)n(1 + θ)n
× log

ka1S

k′d1P
= NS ×∆G, (S7)

where NS quantifies how many molecules of S are catalysed to P.

II. ENERGY DISSIPATION DETERMINED FROM SOLVING THE

FOKKER-PLANCK EQUATION

Consider a general Fokker-Planck equation

∂P (~x, t)

∂t
= −∇(FP −D∇P ) = −∇J (S8)

where F is the force vector, and D is the noise matrix. J is the flux vector for each direction.

The system’s entropy is

S(t) = −
∫
P (~x, t) lnP (~x, t)d~x (S9)

The entropy production rate is[4]:

dS(t)

dt
= −

∫
[lnP (~x, t) + 1]

∂P (~x, t)

∂t
d~x =

∫
[lnP (~x, t) + 1]∇Jd~x (S10)
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Integrated by parts:
dS(t)

dt
= −

∫
JT∇ lnP (~x, t)d~x (S11)

where JT is the transposition of J . By definition J = FP −D∇P , we have

JT∇ lnP = JTD−1F− JTD−1J

P
(S12)

Finally
dS(t)

dt
= −

∫
JTD−1Fd~x+

∫
JTD−1J

P
d~x (S13)

The second term is the free energy dissipation rate (also called entropy production rate[5])

in unit of kBTr, where Tr is the room temperature or the temperature where the reactions

occur.

III. ONSET OF OSCILLATION

Systems at the onset of oscillation is dissipative. In Fig. S1, we show that at the onset

of oscillation, i.e., when amplitude is zero, the free energy dissipation is finite positive.

IV. SIMULATION RESULTS OF REPRESSILATOR, BRUSSELATOR AND

GLYCOLYSIS MODEL

We perform the same simulation as the activator-inhibitor model for repressilator, brusse-

lator and glycolysis. The relation between energy dissipation and phase diffusion are shown

in Fig. S3, with the scaling analysis in each of the insets. The data can be fitted well with

equation V ×D/T = C +W0/(∆W −Wc), with the fitting parameters given in the caption.

These result show the generality of the inverse relation between energy dissipation and phase

diffusion.

V. EFFICIENCY AND MATCH OF PARAMETERS

To optimize efficiency is equivalent to finding the minimum phase fluctuation with a

constant energy dissipation. We set up a simple scheme to gain an intuitive understanding

of the choices of parameters for optimizing efficiency. We consider a biased random walker

on a discrete ring with N sites i = 1, 2...N . Different site can be considered as different phase
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in the oscillation cycle. At site i the forward rate is fi, and reverse rate is fiγi (γi � 1). The

average time from arriving at site i to leaving for site i+1 is ti = 1/(fi−fiγi), with variance

(site/phase uncertainty) of (fi + fiγi)ti. Therefore, starting from site 1, when arriving site

N (a full cycle), the accumulated variance will be:

ΣT =
N∑
i=1

(fi + fiγi)ti =
N∑
i=1

1 + γi
1− γi

≈
N∑
i=1

1 + 2γi. (S14)

A constant energy dissipation (per cycle) requires that
∏N

i=1 γi = γ is a constant. It is easy

to see that ΣT will approach its minimum when γi = N
√
γ is the same for all steps in the

ring.

In the activator-inhibitor model, γ1 = d1[MR]/(a1[M ][R]), γ2 = f−1[Mp][R]/(f1[MR]),

γ3 = d2[MpK]/(a2[Mp][K]), γ4 = f−2[M ][K]/f2[MpK]. Constrain on energy is γ1γ2γ3γ4 =

const. According to the discussions above, the minimum phase fluctuation is achieved

when γ1 = γ2 = γ3 = γ4. For the choices of parameters we used in this study, we have

on average (over time) [R] ≈ [K], [M ] ≈ [Mp], and [MR] ≈ [MpK], thus the optimum

efficiency conditions correspond to a1 ≈ a2 and f−1 ≈ f−2. Based on the relation between

a1, f−1, f−2 and [ATP ], [ADP ], [Pi], the conditions of a1 = a2 and f−1 = f−2 lead to [ATP ] =

103, [ADP ] = [Pi].

VI. EXPERIMENTAL DATA ANALYSIS

The experimental data were obtained from Ref[6] and Ref[7]. The data were processed

to calculate the autocorrelation function and fitted the autocorrelation function with expo-

nentially decay function A cos(2πt/T )e−t/τ , from which the period T and correlation time τ

could be obtained. See Fig. S4.

VII. AMPLITUDE FLUCTUATION, PHASE DIFFUSION AND ENERGY

DISSIPATION IN THE STUART-LANDAU EQUATION

The noisy Stuart-Landau equation for x, y:

dx

dt
= (ax− by)− (cx+ dy)(x2 + y2) + η1(t) = Fx + η1(t),

dy

dt
= (bx+ ay)− (cy − dx)(x2 + y2) + η2(t) = Fy + η2(t),

(S15)
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where a, b, c, d, (b, c, d > 0) are real variables, and 〈ηi(t)ηj(t′)〉 = 2∆δijδ(t − t′). The

corresponding equation in polar coordinates are:

dr

dt
= ar − cr3 + ηr,

dθ

dt
= b+ dr2 + ηθ. (S16)

where ηr = η1(t) cos θ + η2(t) sin θ, and ηθ = −η1(t) sin θ/r + η2(t) cos θ/r. For a > 0, the

system starts to oscillate with a mean amplitude rs =
√

a
c
.

We first derive the amplitude fluctuation. The deviation in r can be defined as

δr = r − rs, (S17)

where rs =
√
a/c. Perturbation δr near rs follows the equation (in first order approxima-

tion):
d(δr)

dt
= −2aδr + ηr(t). (S18)

Following [8], as t→∞, we obtain the amplitude fluctuation:

〈δr2(∞)〉 =
∆

2a
, (S19)

Phase can be defined without ambiguity when rs >
√

∆/2a. This leads to a >
√

2c∆.

When ∆ is small, the phase diffusion constant is determined by expanding the phase velocity

around r = rs. This leads to dθ/dt = b+dr2
s+βδr(t)+ηθ(t), with β ≡ ∂ω(rs)/∂r = 2d

√
a/c.

Approximately, we have 〈θ̇〉 = 0, 〈ηθ(t)ηθ(t′)〉 ≈ ∆/r2δ(t − t′) ≈ ∆/r2
sδ(t − t′). The phase

fluctuation δθ ≡ θ − ω(rs)t follows diffusion with the diffusion constant given by:

〈θ2〉 − 〈θ〉2 =

∫ t

0

∫ t

0

(〈ω(τ1)ω(τ2)〉 − 〈ω(τ1)〉〈ω(τ2)〉)dτ1dτ2

= β2

∫ t

0

∫ t

0

[〈δr(τ1)δr(τ2)〉 − 〈δr(τ1)〉〈δr(τ2)〉]dτ1dτ2 + ∆t/r2
s .

(S20)

Following [8], as t→∞, we have:

〈θ2〉 − 〈θ〉2 = (β2 ∆

2a2
+

∆

r2
s

)t ≡ Dθt. (S21)

The Fokker-Planck equation for Eq. S15 is:

∂P

∂t
= − ∂

∂x
(FxP −∆

∂P

∂x
)− ∂

∂y
(FyP −∆

∂P

∂y
) = −∂Jx

∂x
− ∂Jy

∂y
. (S22)

where Jx and Jy are the probability density fluxes in phase space. It’s more convenient to

write Eq. S22 in polar coordinates:

∂P

∂t
= −1

r

∂

∂r
[(ar − cr3)rP − r∆∂P

∂r
]− ∂

∂θ
[(b+ dr2)P − ∆

r2

∂2P

∂θ2
]. (S23)
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Since ω(r) = b+ dr2 does not depend on θ, the steady state probability distribution Ps(r, θ)

only depends on r:

Ps(r, θ) = P (r) = A exp [−(cr4/4− ar2/2)

∆
], (S24)

where A =
[
2π
∫

exp [−(cr4/4− ar2/2)/∆]rdr
]−1

is the normalization constant.

Following Section II.E of the main text, we obtain the minimum free energy dissipation:

Ẇ = kBTe

∫ ∫
[
J2
x

∆P
+

J2
y

∆P
]dxdy = kBTe

∫ ∫
r2ω2P

∆
rdrdθ. (S25)

where Te is an (effective) temperature of the environment, we set kBTe = 1 here. The period

of the oscillation is T = 2π/〈ω(r)〉. The energy dissipated in one cycle is:

∆W = ẆT =
2π〈r2ω2〉

∆〈ω〉
. (S26)

The explicit expression for energy dissipation is:

∆W = 2π

√
c∆(2a2d2 + 8d2c∆ + 4abcd+ 2b2c2) + ea

2/4c∆
√
πf(a)[a(bc+ ad)2 + 2cd(2bc+ 3ad)∆]

c2∆[2d
√
c∆ + (bc+ ad)ea2/4c∆

√
πf(a)]

,

(S27)

where f(a) = 1 + erf(a/2
√
c∆), with erf the error function. When a > 2

√
c∆ and ∆ is

small, the term ea
2/4c∆ dominates, which gives:

∆W ≈ 2π
a(bc+ ad)2 + 2cd(2bc+ 3ad)∆

c2∆(bc+ ad)

=
2πda2

c2∆
+

2πba

c∆
+

4πd2a

c(ad+ bc)
+

8πd

c
.

(S28)

∆W depends linearly on a in the region of a << bc/d, which gives the upper bound of the

inverse relation between energy dissipation and phase diffusion. When d → 0, the upper

bound goes to infinity, and Wc → 0.

Beyond the upper bound (a > bc
d

), the energy dissipation will be dominated by higher

order terms in a, e.g., a2 term. The inverse relation will be corrected by terms like (∆W −

Wc)
−1/2, which decreases slower than (∆W −Wc)

−1. The nonlinear term of a2 in dissipation

is caused by the phase-amplitude correlation parameter d. When d = 0 (which means the

phase direction is independent of amplitude), the upper bound will vanish. This implies the

inverse relation between energy dissipation and phase diffusion are valid in a relatively large

region when the phase-amplitude coupling is not strong.

In Fig. S5, we give the simulation results for b = 1, d = 1, c = 1,∆ = 0.02. The inverse

relation between energy dissipation and phase diffusion is valid in a finite region (region
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II shown in Fig. S5 b). In this region, the simulation result agrees well with the inverse

relation predicted in Eq. 12 in the main text.

A. C is finite when ∆1 6= ∆2.

Here we show that in the generic case where ∆1 and ∆2 vary independently, C, the

phase diffusion at the infinite dissipation limit ∆W → ∞, is finite. We first show this

analytically in the limit when ∆1 and ∆2 are both small. In this limit, 〈ηr(t)ηr(t′)〉 =

δ(t− t′)(∆1〈cos2 θ〉+∆2〈sin2 θ〉), and 〈ηθ(t)ηθ(t′)〉 ≈ (∆1〈cos2 θ〉+∆2〈sin2 θ〉)/r2
s . Averaging

in sufficient long period, i.e., t = nT, n → ∞, gives
∫ t

0
〈cos2 θ〉dt =

∫ t
0
〈sin2 θ〉dt = 1/2. The

phase diffusion constant will be:

Dθ =
∆1 + ∆2

2a
(
d2

2c
+ c) =

κ

2a
∆1 +

κ

2a
∆2. (S29)

The energy dissipation in one cycle is:

∆W =
2π

ω(rs)

∫ ∫
[
J2
x

∆1P
+

J2
y

∆2P
]dxdy ≈ 2π

ω(rs)
[

∫ ∫
F 2
xPdxdy

∆1

+

∫ ∫
F 2
yPdxdy

∆2

] ≈ W1

∆1

+
W2

∆2

.

(S30)

When ∆1,∆2 → 0, Pr(r) → δ(r − rs) and W1 = W2 are finite constants determined by

a, b, c, d. In a realistic system, noise can come through different degrees of freedom, some

of which are controlled and some are not. Here, we use Eq. S29 and Eq. S30 to study

this general situation. By keeping ∆1 as a small constant and varying ∆2 continuously,

the inverse relationship between phase diffusion and energy dissipation can be obtained by

eliminating ∆2:

Dθ = C +
W0

∆W −Wc

, (S31)

where C = κ∆1/2a, Wc = W1/∆1, and W0 = κW2/2a are finite constants dependent on

model parameters (a, b, c, d, and ∆1).

In Fig. S6, we show the simulation results of a specific case with fixed ∆1 = 0.1 while

varying ∆2 ∈ [0.05, 0.2]. We found that the onset, which corresponds to D →∞, occurs at

a finite energy dissipation Wc 6= 0 (Fig. S6a). As ∆2 → 0, which corresponds to ∆W →∞,

D approaches a non-zero constant C ≈ 0.0011 as there is still non-zero fluctuation in the x

direction that is not suppressed by free energy dissipation. Overall, the general relationship

of D/T = W0/(∆W −Wc) +C, with C 6= 0, holds true with finite values of W0, Wc, and C
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as shown in Fig. S6b. Note that in the main text, we considered the symmetric case with

∆1 = ∆2. Taking the limit ∆1 = ∆2 → 0 in Eq. S29 and Eq. S30, it is easy to see that

Dθ → 0 and ∆W →∞, therefore C = 0 in the symmetric model.

VIII. AMPLITUDE FLUCTUATION

The (minimum) amplitude fluctuation can be defined as the dispersion of the stochastic

trajectories departing from the deterministic trajectory in phase-space:

d2 =

∫
min (~x− ~xd)2P (~x)d~x (S32)

where ~xd are the points on the deterministic trajectory. In the four models we studied, the

amplitude fluctuations decrease with energy dissipation and scale with 1/
√
V , as shown in

Fig. S7.

IX. ROBUSTNESS AND ENERGY DISSIPATION

For the activator-inhibitor model, the total number of enzyme E and phosphatase K may

vary in real systems (e.g., from cell to cell). Here we search the parameter space of (MT , KT )

in the region MT ∈ [0, 1000] and KT ∈ [0, 2], and check wether the system oscillates (with

amplitude larger than 0.1) for different values of γ. Robustness is defined as the area in

the parameter space where oscillation exists. We found robustness increases as the system

becomes more irreversible or equivalently dissipates more free energy, as shown in Fig. S8.
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FIG. S1. The dependence of amplitude (A) and period (T ) on energy dissipation for the four

models: (a) activator-inhibitor, (b)repressilator, (c)brusselator, (d)glycolysis. For all the four

cases, the critical free energy dissipation per period Wc is finite at the onset of the oscillation, i.e.,

A = 0.
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FIG. S3. Relation between the dimensionless diffusion constant (D/T ) and free energy dissipation

repressilator, brusselator and glycolysis. The insets are fitting results with equation V × D/T =

C +W0× (W −Wc)
α. (a) Repressilator, with fitting parameters Wc = 1.75,W0 = 25.9± 3.21, α =

−1.098± 0.078, C = 0.4± 0.2. (b) Brusselator, with fitting parameters Wc = 100.4,W0 = 846.3±

158.2, α = −1.006± 0.031, C = 0.5± 0.1. (c) Glycolysis, with fitting parameters Wc = 80.5,W0 =

151.4± 19.4, α = −1.058± 0.026, C = 0.5± 0.3.
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a
b

FIG. S4. Autocorrelation of experimental data from the reconstituted circadian clock system of

the cyanobacteria system (the Kai system). The autocorrelation function of the phosphorylated

KaiC were calculated from the original data and fitted by A cos(2πt/T )e−t/τ . From the fits, we

obtain he period T and the correlation tim τ , which are used in Fig. 4 in the main text. (a) Data

(symbols) from Ref[7] with different ATP percentages. The lines are the fits. (b) Data from Ref[6]

with different ADP percentages. The lines are the fits.



15

3 4 5 6 7
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

ln[(∆W−W
c
)/W

c
]

ln
D

 

 

simulation

fitting

I

II

III
a=0.2

a=1.0

0 10 20 30
−1.5

−1

−0.5

0

0.5

1

1.5

t

X

 

 

a=0.2

a=1.0

a b

FIG. S5. The inverse relation between energy dissipation and phase diffusion are valid in limited

regions. The simulation parameters for SL equation are b = 1, c = 1, d = 1,∆ = 0.02. (a)

Trajectories at the lower bound a =
√

2c∆ = 0.2, and upper boundary a = bc/d = 1.0. (b)

The inverse relation are valid in limited regions. Region I has phase ambiguity. Region II is the

inverse relation region. Region III has the relation dominated by (∆W −Wc)
−1/2. The blue line

is the simulation result, and the red line is the fitting with equation D = W0× (∆W −Wc)
α, with

Wc = 8πd/c = 25.1, and α = −0.9784± 0.0185,W0 = 3.09± 0.48.
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FIG. S6. Numerical simulation results of of the general Stuart-Landau equation (Eq. S24) with

a = 1, c = 1, b = 2, d = 1,∆1 = 0.1. We varied ∆2 ∈ [0.05, 0.2]. (a) Relationship between energy

dissipation ∆W and noise strength ∆2. When ∆2 is large, ∆W decreases linearly with 1/∆2. The

dashed line shows when ∆2 → ∞, ∆W → Wc ≈ 2967 (black circle). (b) The peak time diffusion

constant D/T versus ∆W . The red dashed curve is the fitting inverse proportional relation, with

parameters W0 = 10.2,Wc = 2967, C = 0.0011.
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FIG. S7. Relation between relative amplitude fluctuation δA/A and free energy dissipation ∆W

for the four models. (a) activator-inhibitor; (b)repressilator; (c)brusselator; (d)glycolysis. Data for

different volumes collapses (insets) when we scaled amplitude fluctuation with 1/
√
V .
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FIG. S8. The relationship between functional robustness and free energy dissipation. (a) The green,

blue and red curves in the (MT ,KT ) space correspond to the boundaries inside which oscillations

exist for γ = 10−3, γ = 10−4 and γ = 10−5, respectively. The star indicates the parameters in main

text Fig1 a. (b) Robustness, defined as the area of oscillation in the parameter space, increases as

γ decreases. This means that higher free energy consumptions (on average) is needed for higher

robustness against parameter variations in achieving oscillatory behaviors.


